Skip Nav Destination
Close Modal
Search Results for
hot corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 262 Search Results for
hot corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
... Abstract A microstructural analysis has been made of a burner nozzle removed from service in a coal gasification plant. The nozzle was a casting of a Co-29wt%Cr-19wt%Fe alloy. Extensive hot corrosion had occurred on the surface. There was penetration along grain boundaries, and corrosion...
Abstract
A microstructural analysis has been made of a burner nozzle removed from service in a coal gasification plant. The nozzle was a casting of a Co-29wt%Cr-19wt%Fe alloy. Extensive hot corrosion had occurred on the surface. There was penetration along grain boundaries, and corrosion products in these regions were particularly rich in S, and also contained Al, Si, O, and Cl. The grain boundaries contained Cr-rich particles which were probably Cr23-C6 type carbides. In the matrix, corrosion occurred between the Widmanstatten plates. Particles were found between these plates, most of which were rich in Cr and O, and probably were Cr2-O3 oxides. Other matrix particles were found which were rich in Al, O, and S. The corrosion was related to these grain boundary and matrix particles, which either produced a Cr-depleted zone around them or were themselves attacked.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001281
EISBN: 978-1-62708-215-0
... analysis determined that the deterioration was the result of hot corrosion caused by a combination of contaminants, cooling-hole blockage, and coating loss. Selected References Selected References • Benac D.J. and Swaminathan V.P. , Elevated-Temperature Life Assessment for Turbine...
Abstract
The first-stage nozzles of a high-pressure turbine section of an industrial gas turbine exhibited leading and trailing-edge deterioration. The nozzles were made of X-40, a cobalt-base alloy, and were aluminide coated. Failure analysis determined that the deterioration was the result of hot corrosion caused by a combination of contaminants, cooling-hole blockage, and coating loss.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001109
EISBN: 978-1-62708-214-3
... 0.01 2.19 2.55 Atomic 2.49 38.86 0.10 50.96 0.66 0.01 3.25 3.65 Fig. 3 Micrographs of grate bar that suffered hot corrosion. (a) Unetched, showing external oxide scale and internal sulfide particles (light gray area). (b) Etched, showing external oxide scale along...
Abstract
Grate bars in the traveling grate indurators in several taconite processing units suffered excessive corrosion following a conversion from acid to fluxed pellet production procedures. The campaign life of the HH grade cast stainless steel bars was reduced from more than 7 years to approximately 9 months. Several corroded grate bars were examined metallographically and by electron microscopy to determine the causes of the accelerated corrosion. Chemical and X-ray diffraction analyses were also conducted, along with simulation tests to assess the role of alkali chlorides in the corrosion process. The basic cause of degradation was found to be hot corrosion caused by the deposition of alkali sulfates and chlorides. However this degradation may have been aggravated by thermal cycling and abrasion. The source of the salt was impurities in the flux. Two potential solutions were proposed: modification of the processing parameters to reduce the salt deposition and / or change of bar materials to a more resistant alloy.
Image
in Failure Analysis of Gas Turbine Last Stage Bucket Made of Udimet 500 Superalloy
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Failure of Gas Turbine Last- Stage Bucket
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
in Hot Corrosion of Stainless Steel Grate Bars in Taconite Indurators
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 3 Micrographs of grate bar that suffered hot corrosion. (a) Unetched, showing external oxide scale and internal sulfide particles (light gray area). (b) Etched, showing external oxide scale along with precipitated carbides (dark gray area)and lamellar structure consisting of austenite
More
Image
in Hot Corrosion of Stainless Steel Grate Bars in Taconite Indurators
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 6 Results of laboratory hot corrosion (cyclic) tests on HH steel coupons for 100h. (a) and (b) Coupons corroded undersulfate and sulfate-chloride loading, respectively (c) and (d) Corrosion morphology undersulfate and sulfate-chloride loading, respectively.
More
Image
in Corrosion Failures in Gas Turbine Hot Components
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
... Fig. 1 Schematic of the gas turbine [ 13 ] Fig. 2 Regimes of high-temperature attack; temperatures are approximate [ 1 ] Fig. 3 Macrograph showing the bucket from the first stage in as-received condition Fig. 4 Macrograph showing the hot corrosion cavities found...
Abstract
Gas turbines and other types of combustion turbomachinery are susceptible to hot corrosion at elevated temperatures. Two such cases resulting in the failure of a gas turbine component were investigated to learn more about the hot corrosion process and the underlying failure mechanisms. Each component was analyzed using optical and scanning electron microscopy, energy dispersive spectroscopy, mechanical testing, and nondestructive techniques. The results of the investigation provide insights on the influence of temperature, composition, and microstructure and the contributing effects of high-temperature oxidation on the hot corrosion process. Preventative measures are also discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001701
EISBN: 978-1-62708-219-8
... Biological corrosion A closed-loop hot water heating system at a museum in South Carolina was the subject of this failure evaluation. The system consisted of plain carbon steel pipes (Schedule 40) made of ASTM A 106 or A 53 (ERW or Seamless). The supply and return lines were made of the same materials...
Abstract
A closed-loop hot water heating system at a museum in South Carolina was the subject of failure evaluation. The system consisted of plain carbon steel pipes (Schedule 40) made of ASTM A 106 or A 53 (ERW or seamless). The supply and return lines were made of the same materials. The fittings were mechanically threaded assemblies. Temperatures ranged from 150 to 155 deg F (65.6 to 68.3 deg C). Leaks in the system had reportedly initiated immediately after the building had been placed in service. The cause of corrosion inside the steel pipes was attributed to tuberculation caused by oxygen concentration cells and oxygen-pitting related corrosion. Both types of corrosion are due to the poor quality of the water and the lack of corrosion control in the water system.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001602
EISBN: 978-1-62708-229-7
... Abstract This article presents a failure analysis of 37.5 mW gas turbine third stage buckets made of Udimet 500 superalloy. The buckets experienced repetitive integral tip shroud fractures assisted by a low temperature (type II) hot corrosion. A detailed analysis was carried out on elements...
Abstract
This article presents a failure analysis of 37.5 mW gas turbine third stage buckets made of Udimet 500 superalloy. The buckets experienced repetitive integral tip shroud fractures assisted by a low temperature (type II) hot corrosion. A detailed analysis was carried out on elements thought to have influenced the failure process: a) the stress increase from the loss of a load bearing cross-sectional area of the bucket tip shroud by the conversion of metal to the corrosion product (scale), b) influence of the tip shroud microstructure (e.g., a presence of equiaxed and columnar grains, their distribution and orientation), c) evidence of the transgranular initiation, and d) intergranular creep mechanism propagation. The most probable cause of the bucket damage was the combination of increased stresses due to corrosion-induced thinning of the tip shroud and unfavorable microstructures in the tip shroud region.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046969
EISBN: 978-1-62708-227-3
..., 2.7x micrographic examination on sections etched with ferric chloride and hydrochloric acid in methanol) supported the conclusions that the blades failed by hot-corrosion attack. Variation in rate of attack on coated blades was attributed to variation in integrity of the aluminide coating, which had...
Abstract
Aluminide-coated and uncoated IN-713 turbine blades were returned for evaluation after service in a marine environment because of severe corrosion. Based on service time, failure of these blades by corrosive deterioration was considered to be premature. Analysis (visual inspection, 2.7x micrographic examination on sections etched with ferric chloride and hydrochloric acid in methanol) supported the conclusions that the blades failed by hot-corrosion attack. Variation in rate of attack on coated blades was attributed to variation in integrity of the aluminide coating, which had been applied in 1966, when these coatings were relatively new. It is evident that maintaining the integrity of a protective coating could significantly increase the life of a nickel-base alloy blade operating in a hot and corrosive environment.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001657
EISBN: 978-1-62708-227-3
... that coating erosion in conjunction with severe hot-corrosion was responsible for crack initiation in the leading edge area. Coating erosion Marine engines Turbine blades Turbine vanes MAR-M302 Inconel 713C High-temperature corrosion and oxidation Fatigue fracture Introduction...
Abstract
The circumstances surrounding the in-service failure of a cast Ni-base superalloy (Alloy 713LC) second stage turbine blade and a cast and coated Co-base superalloy (MAR-M302) first stage air-cooled vane in two turbine engines used for marine application are described. An overview of a systematic approach, analyzing the nature of degeneration and failure of the failed components, utilizing conventional metallurgical techniques, is presented. The topographical features of the turbine blade fracture surface revealed a fatigue-induced crack growth pattern, where crack initiation had taken place in the blade trailing edge. An estimate of the crack-growth rate for the stage II fatigue fracture region coupled with the metallographic results helped to identify the final mode of the turbine blade failure. A detailed metallographic and fractographic examination of the air-cooled vane revealed that coating erosion in conjunction with severe hot-corrosion was responsible for crack initiation in the leading edge area.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0047606
EISBN: 978-1-62708-228-0
..., the substitution of a more corrosion-resistant alloy, such as Incoloy 800 or 825, may be necessary. Activation Butt welds Pipes Residual stress Weld metal 316L UNS S31603 Stress-corrosion cracking Pitting corrosion Joining-related failures Type 316L stainless steel pipes carrying brine at 120...
Abstract
Type 316L stainless steel pipes carrying brine at 120 deg C (250 deg F) and at a pH of about 7, failed by perforation at or near circumferential butt-weld seams. The failure was examined optically and radiographically in the field. Specimens were removed and examined metallographically and with a SEM in the laboratory. The examinations revealed a combination of failure mechanisms. The pitting failure of the welds was attributed to localized attack of an activated surface, in which anodic pits corroded rapidly. Additionally, SCC driven by residual welding stresses occurred in the base metal adjacent to the welds. Use of highly stressed austenitic stainless steels in high-chloride environments having a temperature above 65 deg C (150 deg F) should be discouraged. Solution annealing or shot peening to reduce residual stresses may be advisable. If heat treatment is not feasible after welding, the substitution of a more corrosion-resistant alloy, such as Incoloy 800 or 825, may be necessary.
Image
in Premature Failure of Turbine Blades by Corrosion
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 1 Uncoated and aluminide-coated IN-713 turbine blades that failed by hot corrosion in a marine environment. (a) An uncoated blade showing splitting along the leading edge and swelling on the surface of the airfoil. 2.7x. (b) Section taken through the leading edge of an uncoated blade
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091761
EISBN: 978-1-62708-229-7
... in a bucket tip shroud and its principal stresses Discussion The differing microstructure of the airfoil results in changes in mechanical properties. Type 2 hot corrosion was present at these third-stage buckets, which operate at approximately 650 °C (1200 °F). Other contributing factors were...
Abstract
Turbine buckets in a 37.5-MW gas turbine made of Udimet 500 superalloy failed in service. The power plant was located 1 km (0.6 miles) from the Pacific Ocean and operated on No. 2 diesel fuel, which was supplied by tanker ship. Turbine bucket failures occurred on three units after 2500 to 6400 h of operation. Investigation (visual inspection, metallographic examination, and stress analysis) supported the conclusion that the differing microstructure of the airfoil resulted in changes in mechanical properties. Because normal operation includes cycling of loads and temperatures, the shroud tip fractured due to thermomechanical fatigue in its degraded state. Recommendations included special chromium or silicon-rich coating to minimize corrosion in gas turbines operating in a marine environment with operating temperatures in the range of type 2 corrosion (650 to 750 deg C, or 1200 to 1380 deg F). Additionally, it was suggested that fuel delivery, handling, and treatment be high quality, to maintain fuel contamination within design limits, and inlet air filtration must be designed for the coastal site. Also, changing the bucket tip by increasing its thickness and changing the casting technique would reduce the stress and make the design more tolerant of corrosion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
.... In gas corrosion, the driving force is the pressure gradient. Gas penetration is less rapid, in terms of mass, than that of wetting liquids; reactions do not necessarily commence at the hot face. However, the depth of penetration of gases can be much greater than that of liquids. Moving down...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
1