1-20 of 136 Search Results for

high-velocity mechanical forming

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... of partial blockage of a tube. The impinging stream can rapidly perforate tube walls, especially if silt or mud have an additional erosive effect. Steam erosion is another form of impingement corrosion. It occurs when high-velocity wet steam contacts a metal surface. The resulting attack usually produces...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... ( Ref 72 , 75 ), while it varies from 2 to 6 with a mean value of approximately 3 for brittle materials ( Ref 62 , 76 , 77 ). The exponent may vary between different velocity ranges if the erosion mechanism is changing (thresholds). For example, this can be associated with transfer from high-cycle...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001409
EISBN: 978-1-62708-229-7
... Abstract Dezincification is a particular form of corrosive attack which may occur in a variety of environments and to which some brasses are susceptible. It is favored by waters having a high oxygen, carbon dioxide, or chloride content, and is accelerated by elevated temperatures and low water...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... of a fluid is involved in a tribological process, it is usually called erosion. By definition, both involve progressive loss of material or alteration of material from a solid surface, but erosion requires the mechanical action of a fluid, such as a gas or liquid. Sand blown through a steel pipe at high...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
... is made up of explosives (usually cyclonite or cyclotrimethylene trinitramine), plastic binder, plasticizer, and usually a marker to help detect the explosive and identify its source. As in studying samples the welding length is not long enough, the C-4 which is a high detonation velocity explosive has...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... propellers, valves, heat-exchanger tubes, and other hydraulic structures in contact with high-velocity liquids subjected to pressure changes. This type of wear also has been observed in mechanical devices such as plain bearings, seals, and orifices in which fluid goes through severe restrictions. Cavitation...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
.... The formation of the white layer has been attributed to adhesion ( Ref 9 ), although mechanical “mixing” and diffusion also take place. More probably, a combination of these three occurs to give the specific morphology and composition of the white layer. The deformation zone is clearly formed by the repetitive...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001411
EISBN: 978-1-62708-234-1
...-40Zn 80Cu-20Zn 70Cu-30Zn Dealloying/selective leaching Dezincification is a particular form of corrosive attack which may occur in a variety of environments and to which some brasses are susceptible. It is favoured by waters having a high oxygen, carbon dioxide, or chloride content...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003558
EISBN: 978-1-62708-180-1
... Corrosive or noncorrosive fluid Jet erosion Grazing or high angle of incidence High or low temperature Corrosive or noncorrosive fluid It often is desirable and helpful to augment this type of classification with a characterization of the principal wear mechanism or mechanisms involved...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... Abstract Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006850
EISBN: 978-1-62708-395-9
..., thermosets, which do not soften due to thermal energy, undergo chemical degradation at the interface. These degraded products detach themselves from the main body of the polymer and form transfer film and debris at the interface. The wear rate can be very high if the prevailing interface temperature is high...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... tends to increase with decreasing abrasive particle size. For brittle materials and high impingement angles, the value of n tends toward the higher extreme. In erosion, a change in abrasive impact velocity can lead to a change in the dominant wear mechanism ( Ref 24 ), resulting in a change...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
.... The formation of the white layer has been attributed to adhesion ( Ref 12 ), although mechanical “mixing” and diffusion also take place. More probably, a combination of these three occurs to give the specific morphology and composition of the white layer. The deformation zone is clearly formed by the repetitive...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... Abstract Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006911
EISBN: 978-1-62708-395-9
... that required to permanently deform the material, local fatigue produces cracks that eventually lead to the removal of relatively large pieces of material in the form of pitting, spalling, or flaking. Chemical wear is found when chemical reactions occur along with mechanical wear. This type of wear is less...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... to 4.8 but are generally between 2 and 3 ( Ref 18 ). The velocity of the slurry not only affects the rate of mechanical damage of a material but the corrosion rate as well. Above a threshold velocity, corrosion products can effectively be stripped from an alloy, thus making available a new surface...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
.../6 … Nylon 6 0.3 589 Normal load = 825 kN (pressure = 20 MPa); sliding velocity = 5 mm/s; steel counterface ( R a ≈ 5 μm), extremely high pressure 15 Similar to the case of many other plastics, the tribological performance of nylon greatly depends on its ability to form adherent...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... Abstract Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001829
EISBN: 978-1-62708-241-9
..., and x-ray diffraction. It was shown that degradation is driven by chemical and mechanical differences, oxide growth, depletion, and recrystallization, the combined effect of which results in exfoliation, spallation, and mechanical thinning. turbine vanes thermal degradation high-temperature...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001410
EISBN: 978-1-62708-220-4
... Dezincification is a particular form of corrosive attack which may occur in a variety of environments and to which some brasses are susceptible. It is favoured by waters having a high oxygen, carbon dioxide, or chloride content, and is accelerated by elevated temperatures and low water velocities...