1-20 of 348 Search Results for

high-temperature fatigue

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
...) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. Fatigue damage at high temperatures develops as a result of inelastic deformation where the strains are nonrecoverable. Therefore, TMF damage is complex, as it may accumulate over a range...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... Fig. 13 (a) Heater tube that failed due to stress rupture. (b) and (c) Stress-rupture voids near the fracture. Source: Ref 18 Abstract Abstract The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... in Fatigue Lifetime Predictive Techniques , STP 1122, American Society for Testing and Materials , 1992 , p 47 – 76 22. Pineau A. and Antolovich S.D. , High Temperature Fatigue: Behaviour of Three Typical Classes of Structural Materials , Mater. High Temp. , Vol 32 ( No. 3 ), 2015...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001743
EISBN: 978-1-62708-217-4
..., they may not function properly. Circumferential cracks and fractures near the head-to- barrel junctions have occurred on numerous cylinders of reciprocating piston engines. In most instances, cracks were caused by high cyclic pressures and high temperatures resulting most probably from detonation. At times...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001657
EISBN: 978-1-62708-227-3
...-cooled vane revealed that coating erosion in conjunction with severe hot-corrosion was responsible for crack initiation in the leading edge area. Coating erosion Marine engines Turbine blades Turbine vanes MAR-M302 Inconel 713C High-temperature corrosion and oxidation Fatigue fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001192
EISBN: 978-1-62708-234-1
.... No cause for the crank fracture could be established from material testing. Probably the load was too high for the strength of the crank. Tensile strength could have been increased for the same material by tempering at lower temperature. Additionally, the resistance against high bend fatigue stresses...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
... F32800 Thermal fatigue fracture (Other, general, or unspecified) distortion High-temperature corrosion and oxidation An experimental high-temperature rotary valve was found stuck in the housing due to growth and distortion after approximately 100 h. Gas temperatures were suspected to have been...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001846
EISBN: 978-1-62708-241-9
... was low-cycle rotation-bending fatigue. The bearing sleeve failed as a result of abrasive and adhesive wear. Detailed metallurgical analysis indicated that the sleeve and its respective journal had been subjected to abnormally high temperatures, increasing the amount of friction between the sleeve...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001470
EISBN: 978-1-62708-220-4
... of the progress of fatigue cracks. Failure of the one impeller and the cracking of the others were attributed to “low-cycle high-strain fatigue” due to fluctuating circumferential (hoop) stresses. Centrifgual pumps Impellers Stresses 2.5Ni-Cr-Mo Fatigue fracture One impeller of a two-stage...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
...-TEMPERATURE FAILURE MECHANISMS and metallurgical instabilities reduce life or cause loss of function or operating time of high-temperature components. In addition, once a failure occurs from creep, fatigue, or an embrittlement degradation phenomenon at high temperature, the analysis team is often confronted...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001675
EISBN: 978-1-62708-220-4
...Abstract Abstract The failure of a reformer tube furnace manifold has been examined using metallography. It has been shown that the cause of failure was thermal fatigue; the damage was characterized by the presence of voids produced by creep mechanisms operating during the high temperature...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046981
EISBN: 978-1-62708-218-1
... region of the valve was heated to about 930 deg C (1700 deg F) during operation. The cause of fatigue fracture, therefore, was a combination of non-uniform bending loads and overheating. No recommendations were made. Engine valves High temperature 21-2N UNS S63012 Pitting corrosion Corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001422
EISBN: 978-1-62708-229-7
... being that this region of the plate had been heated to an excessively high temperature. A corrosion-fatigue fissure was at one location, this having originated at the internal surface of the pipe and run into an inclusion in the defective zone. The failure resulted from the development of corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0009190
EISBN: 978-1-62708-225-9
... that the failure resulted from several interrelated factors: the lubricant viscosity was too low causing high temperatures; no antiscuff additives were used; a gearbox designed as a speed reducer was used as a speed increaser (the designer selected a long-addendum tooth for the pinion); the gear teeth were...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001019
EISBN: 978-1-62708-217-4
... to extremely high temperatures, as indicated by melting in the brass components and the extreme distortion in the rollers. Microscopic examination on the crankshaft material showed it to be a good quality steel. On the other hand, the chromium plate was thick, porous, and cracked in many places, including...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... steel tube Fig. 2 High-temperature degradation of a gas turbine transition duct. (a) Carbide, carbonitride precipitates, and oxide pentration along grain boundary. (b) Creep cracking along grain-boundary precipitates (arrows) on IN-617 panel. Creep cavities along grain boundaries link up...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091761
EISBN: 978-1-62708-229-7
... the casting technique would reduce the stress and make the design more tolerant of corrosion. Marine environments Protective coatings Udimet 500 UNS N07500 High-temperature corrosion and oxidation Turbine buckets in a 37.5 MW gas turbine made of Udimet 500 superalloy failed in service ( Ref 1...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046205
EISBN: 978-1-62708-225-9
.... Evidence found supports the conclusion that the shaft failed as the result of stress in the sharp fillets and rough surfaces at the root of the splines. Cold weather failure occurred sooner than in hot weather because ductile-to-brittle transition temperature of the 1040 steel shaft was too high...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001574
EISBN: 978-1-62708-223-5
... punch was a clear indication of high temperature exposure (due to insufficient cooling) during application. The most probable cause of failure was thermal fatigue. Grain boundaries Precipitation Punches WR-95 Chromium nitride coating Thermal fatigue fracture Background Observations...