1-20 of 35 Search Results for

high-temperature dynamic recovery test

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006930
EISBN: 978-1-62708-395-9
... • Can perform testing at multiple temperatures with a single loading Capillary • Can actually measure high shear rates that are encountered in industrial applications • Can be used to study melt fracture Test Methods Unidirectional Steady State Flow One common way...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006849
EISBN: 978-1-62708-395-9
.... This is just one source of suspect data replication. Consequently, due to the limited upper thermal stability/endurance of the commercial heat exchange fluid, the characterization of high temperature-resistance engineering resins and specialty polymers requires advanced dynamic mechanical rheological testing...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006928
EISBN: 978-1-62708-395-9
... increases, the molecular resistance to further deformation decreases; that is, the effective modulus falls. The degree of curvature depends on the material and the test conditions. At high strain rates and/or low temperatures, the stress-strain relationship usually approximates a straight line. Most...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... frames of measurement, if the plastic is assumed to behave as in the generalized Maxwell model. The experimental results from dynamic mechanical tests can be used to assess the elastic versus the viscous nature of a plastic material at a given frequency and temperature. By using the principle of time...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
..., an ever-diminishing creep rate results; however, if the temperature is sufficiently high, dislocations rearrange and annihilate through recovery events. During creep deformation, the material also is progressively degraded or damaged as the amount of creep strain increases over time. The classical...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... depending on the nature of the sample and the experiment. The normal operating temperature range for DSC testing is −180 to 700 °C (−290 to 1290 °F), with a standard heating rate of 10 °C/min (18 °F/min). A dynamic purge gas is used to flush the sample chamber. Nitrogen is the most commonly used purge gas...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... creep tests under a constant stress instead of a constant load. Each of these early studies on creep revealed a change in the creep response of a material as a function of time. Bulk Creep Behavior Some key material properties at high temperature are thermal expansion coefficient, stress rupture...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... with rigid chains between them and cross-linking chains High-strength and temperature-resistant materials E Rigid-chain domains in a flexible-chain matrix Styrene-butadiene-styrene, triblock polymer Thermoplastic elastomer Note: See Fig. 2 . PE, polyethylene; PP, polypropylene; PVC, polyvinyl...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
..., although this can vary, depending on the nature of the sample and the experiment. The normal operating temperature range for DSC testing is −180 to 700 °C (−290 to 1290 °F), with a standard heating rate of 10 °C/min (18 °F/min). A dynamic purge gas is used to flush the sample chamber. Nitrogen is the most...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
... [ 4 ]. Also, in order for the superplastic behavior to show, high strain rate sensitivity, high temperature testing (>1/2 T m ), a fine microstructure, and a relatively low strain rate are required [ 13 – 15 ]. As an ultrafine-grained microstructure is essential to obtain a superplastic...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006932
EISBN: 978-1-62708-395-9
... a consequence of high coefficients of thermal expansion and low thermal diffusivities. Although time-consuming techniques can be used to analyze thermal stresses, several useful qualitative tests are described in this article. The classification of internal stresses in plastic parts is covered. The article...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... by hardness check or destructive testing, chemical analysis • Loading direction may show failure was secondary • Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) • Load exceeded the dynamic strength of the part • Check for proper alloy and processing as well as proper...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... was secondary• Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) • Load exceeded the dynamic strength of the part• Check for proper alloy and processing as well as proper toughness, grain size• Loading direction may show failure was secondary or impact induced• Low...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
... modulus of material can be measured over time. Fig. 3 Typical dynamic mechanical spectrum of high-temperature epoxy resin system. G ′, shear modulus; G ″, loss modulus In one common mode of operation, the temperature is increased in jumps of 5 to 10 °C (9 to 18 °F) and is held for 2 min...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006867
EISBN: 978-1-62708-395-9
... of the temperature range over which this decrease in modulus occurs. Caution must be used in comparing the results of the glass transition temperature measurements made by different methods. A polymer tested by a dynamic mechanical analysis method may yield a numerical value of T g that will be somewhat higher...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
..., boiler tubes are also subjected to creep-rupture tests to evaluate their ability to withstand high temperatures under stress and thereby judge their useful remaining life. Chemical Analysis In a failure investigation, it is customary to carry out chemical analysis of the material on a routine...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
.... Fig. 6 Erosion rates of AISI 1020 carbon steel by 180 to 250 μm (7 to 10 mils) particles at 80 m/s (260 ft/s) Increasing the temperature has a mixed effect on the erosion rate for ductile materials ( Ref 77 , 85 ). A substantial amount of high-temperature erosion testing has been performed...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
...) Environment (hostile, underwater, and so on) Time available for inspection (high speed, time-intensive) Reliability and application of multiple methods and their techniques Cost Visual Testing For many noncritical welds, integrity is verified principally by visual tests. Even when other...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... below which the probability is extremely low that cracking will occur is called the threshold stress, and it depends on temperature, the composition and metallurgical structure of the alloy, and the composition of the environment. In some tests, cracking has occurred at an applied stress as low...