1-20 of 440 Search Results for

high-temperature applications

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
.... The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0045911
EISBN: 978-1-62708-230-3
... of 108 MPa (15.7 ksi), which is well below the ASME-assigned design limit of 138 MPa (20 ksi) for Inconel 600 at 420 °C (790 °F). Because of the high-pressure high-temperature application for the Inconel 600, which was specified by the customer, both the material supplier and the bellows manufacturer...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001676
EISBN: 978-1-62708-229-7
... case was surprising. Under normal high-temperature applications in air, the Cr should form a protective oxide. However, this clearly had not happened, perhaps because of the gettering effect of the Zircaloy-2. Zr is a very strong getter for oxygen which would enrich the atmosphere around the assembly...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001818
EISBN: 978-1-62708-241-9
... in rupture/deformation of sleeve. The present sleeve material for Heater Treater appears to be suitable for such kind of high temperature applications. Microstructural evolution and property deterioration during continuous high temperature service is inevitable. However, the life of the sleeve can...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
...) Compressive strength, MPa (ksi) Up to 2500 (360) Up to 5000 (725) Up to 350 (50) Young’s modulus, GPa (10 6 psi) 15–400 (2–58) 150–450 (22–65) 0.001–10 (0.00015–1.45) High-temperature creep resistance Poor to medium Excellent … Thermal expansion Medium to high Low to medium Very high...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... and associated failures of alloys used in high-temperature applications. The complex effects of creep-fatigue interaction are also discussed, although more detail on this is described in the article “Thermomechanical Fatigue: Mechanisms and Practical Life Analysis” in this Volume. Life assessment is also...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
... of high-temperature oxidation on the hot corrosion process. Preventative measures are also discussed. gas turbine thermal fatigue cracking hot corrosion superalloys corrosion cavities spark optical emission spectrometry operating temperature GTD 111 (cast nickel-base superalloy) FSX 414...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... It has been recognized over time that practical engineering alloys used in high-temperature applications, especially low-alloy steels, may reside in the tertiary creep regime for most of their lives, and tertiary creep cannot be ignored in high-temperature structural analysis. The evolution of creep...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
... Abstract An experimental high-temperature rotary valve was found stuck due to growth and distortion after approximately 100 h. Gas temperatures were suspected to have been high due to overfueled conditions. Both the rotor and housing in which it was stuck were annealed ferritic ductile iron...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... Abstract High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0045987
EISBN: 978-1-62708-221-1
... and had a ductile-to-brittle transition temperature exceeding 93 deg C (200 deg F). This transition temperature was much too high for the application. It was recommended that a modified ASTM A572, grade 42 (0.15% C max), type 1 or 2, steel be used (type 1, which contains niobium, may be needed to meet...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... corrosive attack by acids, alkalis, molten metals, molten salts, as well as oxidizing and reducing gases, even at high temperatures. It is widely used in many high-temperature laboratory and pilot-plant scale applications, such as for crucibles, tubes, and special shapes. Zirconia and Thoria Thoria...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... modulus or fracture toughness, can change with temperature. Common design applications for FEA thermal analysis are power piping, pressure vessels and reactors, and turbine and heat engine components. A thermal analysis begins the same as a structural analysis, with the creation of a model...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046972
EISBN: 978-1-62708-217-4
... Thermal fatigue fracture High-temperature corrosion and oxidation During disassembly of an engine that was to be modified, a fractured turbine blade was found. When the fracture was examined at low magnification, it was observed that a fatigue fracture had originated on the concave side...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006773
EISBN: 978-1-62708-295-2
.... This consists of an engineering review of the component design and service application to determine the loads, displacements, temperatures, vibrations, and other service-related factors that the part experiences. It may also include numerous analytical, classical, and computer techniques that are available...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
... as unfilled, shaped articles or as components of composite structures. This article also summarizes the basic thermal properties used in the application of engineering plastics, such as thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass transition...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
.... Applications of various surface modifiers Table 1 Applications of various surface modifiers Segment Area of application Key property needed Additive type Automotive Under the hood, engine and assembly components and coatings High-temperature stability, shear and scratch resistance...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0009190
EISBN: 978-1-62708-225-9
... that the failure resulted from several interrelated factors: the lubricant viscosity was too low causing high temperatures; no antiscuff additives were used; a gearbox designed as a speed reducer was used as a speed increaser (the designer selected a long-addendum tooth for the pinion); the gear teeth were...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003558
EISBN: 978-1-62708-180-1
..., or area Conforming or nonconforming Contact stress Above or below yield Environment Hostile or nonhostile High temperature or low temperature With or without abrasive particles pH level Materials Type-to-type or dissimilar Subcategories of abrasive wear Table 2...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing...