Skip Nav Destination
Close Modal
By
Sara Fernandez, María José Quintana, José Ovidio García, Luis Felipe Verdeja, Roberto González ...
Search Results for
high-strength low-alloy steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 312 Search Results for
high-strength low-alloy steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 15 January 2021
Fig. 53 Fatigue striations in a vanadium high-strength, low-alloy steel. (a) Longitudinal-transverse orientation; stress-intensity range (Δ K ) = 32.3 to 34.3 M P a m (29.4 to 31.2 ksi in .); and fatigue crack growth rate ( da / dN ) = 3.3 to 3.8 × 10 −5 cm/cycle. (b
More
Image
in Failure of a Cast Chain Link
> ASM Failure Analysis Case Histories: Construction, Mining, and Agricultural Equipment
Published: 01 June 2019
Fig. 1 Fracture surface of cast 10-cm (4-in.) high-strength low-alloy steel chain link that failed because of internal hydrogen-assisted cracking. Note hydrogen flake. 0.25×
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 16 Examples of ductile fracture on shear planes. (a) Void sheets from propagation of a crack between widely spaced inclusions within a shear band in a 4340 alloy steel (stress axis is vertical). Source: Ref 41 . (b) Ductile crack growth in high-strength, low-alloy steel (A710). Source
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047474
EISBN: 978-1-62708-221-1
... fracture surface ( Fig. 1 ). Fig. 1 Fracture surface of cast 10-cm (4-in.) high-strength low-alloy steel chain link that failed because of internal hydrogen-assisted cracking. Note hydrogen flake. 0.25× Conclusions The failure of this link was caused by an excessive hydrogen content given...
Abstract
A 10-cm (4-in.) chain link used in operating a large dragline bucket failed after several weeks in service. The link was made of cast low-alloy steel (similar to ASTM A487, class 10Q) that had been normalized, hardened, and tempered to give a yield strength of approximately 1034 MPa (150 ksi). A hydrogen flake approximately 5 cm (2 in.) in diam was observed at the center of the fracture surface. Beach marks indicative of fatigue encircled the hydrogen flake and covered nearly all of the remaining fracture surface. The failure of this linkways caused by an excessive hydrogen content. Two steps were taken to combat this type of failure. First, when service conditions did not require high hardness to combat wear, the links were produced of a steel having a yield strength of about 690 MPa (100 ksi) rather than 1034 M
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001768
EISBN: 978-1-62708-241-9
... cycling high-strength low-alloy steel cracking Charpy impact tests impact toughness ASTM A572 grade 50 (columbium-vanadium steel) Introduction Splice plates used in power transmission line towers are usually galvanized steel angles made of hot-rolled structural steels [ 1 ]. Several holes...
Abstract
A steel splice plate in a power transmission line tower cracked while in service. Metallographic analysis indicated the presence of a white hard martensite layer near the crack, which occurred in the heel of the plate. Mechanical property tests revealed localized hardening in the area of the crack, supporting the metallurgical findings. A substantial deterioration of the Charpy impact toughness of the material in the heel region was also observed which is believed to have caused the initiation and propagation of the cracks leading to the failure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001799
EISBN: 978-1-62708-241-9
... to the transfer of material. gear shaft fatigue fracture seizing high-strength low-alloy steel scoring marks deformed grains uniaxial fatigue testing macrofeatures 4145 (high-strength low-alloy steel) UNS G41450 Introduction High-strength low-alloy steels are used for power transmission...
Abstract
A high-speed pinion gear shaft, part of a system that compresses natural gas, was analyzed to determine why it failed. An abnormal wear pattern was observed on the shaft surface beneath the inner race of the support bearings. Material from the shaft had transferred to the bearing races, creating an imbalance (enough to cause noise and fumes) that operators noted two days before the failure. Macrofeatures of the fracture surface resembled those of fatigue, but electron microscopy revealed brittle, mostly intergranular fracture. Classic fatigue features such as striations were not found. To resolve the discrepancy, investigators created and tested uniaxial fatigue samples, and the microfeatures were nearly identical to those found on the failed shaft. The root cause of failure was determined to be fatigue, and it was concluded that cracks on the pinion shaft beneath the bearings led to the transfer of material.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001836
EISBN: 978-1-62708-241-9
..., investigators concluded the pipe was contaminated with copper at the mill were it was produced. line pipe cracks copper contamination high-strength low-alloy pipe steel copper entrapment SEM backscattered electron analysis bend ductility API 5L X65 PSL2 (high-strength low-alloy steel...
Abstract
An investigation was conducted to determine why 16 out of 139 pipe bends cracked during hot induction bending. The pipe conformed to API 5L X65 PSL2 line pipe standards and measured 1016 mm (40 in.) in diam with a wall thickness of 18.5 mm. A metallurgical cross section was removed along a crack on the extrados to document the crack morphology using optical microscopy. In addition to cracking, golden-yellow streaks were visible at the extrados, and the composition was examined using scanning electron microscopy with energy dispersive spectroscopy. Based on the results, investigators concluded the pipe was contaminated with copper at the mill were it was produced.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
... components superplastic deformation boundary sliding dislocation creep high-strength low alloy steel decohesions traction testing grain size elongation Ti-Nb microalloyed ultrafine-grained steel (UGS steel, general) high-strength low-alloy steel (HSLA steel, general) Introduction A material...
Abstract
This paper describes the superplastic characteristics of shipbuilding steel deformed at 800 °C and a strain rate less than 0.001/s. After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it occurs in stage III creep behavior. The behavior is confirmed through the Ashby-Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
..., enters the metal, diffuses to the crack tip region, and causes propagation by hydrogen stress cracking. This mechanism is no doubt involved in the environmental embrittlement of high-hardness, high-strength carbon, alloy, and stainless steels. While each of these mechanisms explains some...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... In-service cracking occurred to a large piece of mining equipment. The vehicle was fabricated from ASTM A 572 Grade 50 High Strength Low Alloy (HSLA) steel, ranging in thickness from 38 to 152 mm. Fatigue fracture was found to have initiated in a weld HAZ in 127 mm thick plate. The plate met the grade...
Abstract
Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills of the metallurgical failure analyst. The empirical information supplied by hardenability analysis can provide additional processing and service insight to the investigator. The intent of this paper is to describe some applications of steel thermal response concepts in failure analysis, and several case studies are included to illustrate these applications.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... of rail steel . J. Mater. Eng. Perform. 9 ( 6 ), 700 – 709 ( 2000 ) 10.1361/105994900770345584 21. Pearce R. , Mazhar A.A. , Fatigue behaviour of certain high-strength, low-alloy steel sheets . Met. Technol. 3 , 79 – 85 ( 1976 ) 10.1179/030716976803391665 22. Parker...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
..., or weldments. These defects are caused by the presence of excessive hydrogen in the liquid melt prior to solidification. Microperforation may also occur, mainly when steels are exposed to very high-pressure hydrogen near room temperature. Hydrogen-induced blistering is most prevalent in low-strength alloys...
Abstract
This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article focuses on the types of hydrogen embrittlement that occur in all the major commercial metal and alloy systems, including stainless steels, nickel-base alloys, aluminum and aluminum alloys, titanium and titanium alloys, copper and copper alloys, and transition and refractory metals. The specific types of hydrogen embrittlement discussed include internal reversible hydrogen embrittlement, hydrogen environment embrittlement, and hydrogen reaction embrittlement. The article describes preservice and early-service fractures of commodity-grade steel components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also reviewed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
.... These defects are caused by the presence of excessive hydrogen in the liquid melt prior to solidification. Microperforation may also occur, mainly when steels are exposed to very high-pressure hydrogen near room temperature. Hydrogen-induced blistering is most prevalent in low-strength alloys...
Abstract
Hydrogen damage is a term used to designate a number of processes in metals by which the load-carrying capacity of the metal is reduced due to the presence of hydrogen. This article introduces the general forms of hydrogen damage and provides an overview of the different types of hydrogen damage in all the major commercial alloy systems. It covers the broader topic of hydrogen damage, which can be quite complex and technical in nature. The article focuses on failure analysis where hydrogen embrittlement of a steel component is suspected. It provides practical advice for the failure analysis practitioner or for someone who is contemplating procurement of a cost-effective failure analysis of commodity-grade components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also provided.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
... high strength low alloy steel . Mater. Des. 30 , 4088 – 4094 ( 2009 ) 10.1016/j.matdes.2009.05.025 14. Zhao M. , Shan Y. , Investigation on the H 2 S-resistant behaviors of acicular ferrite and ultrafine ferrite . Mater. Lett. 57 , 141 – 145 ( 2002 ) 10.1016/S0167-577X(02...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047479
EISBN: 978-1-62708-221-1
... of the dragline bucket were warned against further hardfacing of these teeth. Design Stress concentration Ultrahigh-strength low-alloy steel Hydrogen damage and embrittlement A tooth used on the digging edge of a large dragline bucket ( Fig. 1 ) failed after several weeks in service. The tooth...
Abstract
A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth. A hardfacing deposit was located at each of these sites. Visual inspection of the hardfacing deposits revealed numerous transverse cracks, characteristic of many types of hardfacing. This failure was caused by cracks present in hardfacing deposits that had been applied to the ultrahigh-strength steel tooth. Given the small critical crack sizes characteristic of ultrahigh-strength materials, it is generally unwise to weld them. It is particularly inadvisable to hardface ultrahigh-strength steel parts with hard, brittle, crack-prone materials when high service stresses will be encountered. The operators of the dragline bucket were warned against further hardfacing of these teeth.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047428
EISBN: 978-1-62708-235-8
... Abstract A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth...
Abstract
A cast dragline bucket tooth failed by fracturing after a short time in service. The tooth was made of medium-carbon low-alloy steel heat treated to a hardness of 555 HRB. The fracture surface was covered with chevron marks. These converged at several sites on the surface of the tooth. A hardfacing deposit was located at each of these sites. Visual inspection of the hardfacing deposits revealed numerous transverse cracks, characteristic of many types of hardfacing. This failure was caused by cracks present in hardfacing deposits that had been applied to the ultrahigh-strength steel tooth. Given the small critical crack sizes characteristic of ultrahigh-strength materials, it is generally unwise to weld them. It is particularly inadvisable to hardface ultrahigh-strength steel parts with hard, brittle, crack-prone materials when high service stresses will be encountered. The operators of the dragline bucket were warned against further hardfacing of these teeth.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... by hardness check or destructive testing, chemical analysis • Loading direction may show failure was secondary • Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) • Load exceeded the dynamic strength of the part • Check for proper alloy and processing as well as proper...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... was secondary• Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) • Load exceeded the dynamic strength of the part• Check for proper alloy and processing as well as proper toughness, grain size• Loading direction may show failure was secondary or impact induced• Low...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001041
EISBN: 978-1-62708-214-3
... indicated by arrow. Fig. 4 Internal view of cracking on fatigue-tested sample 9. Cracking is evident at toes of both fillet welds, as indicated by arrows. Pertinent Specifications The cross member was specified to be fabricated from SAE 950X, a high-strength low-alloy steel...
Abstract
Four truck cross members intended for use in heavy-duty transport trucks were investigated. Two of the members had cracked on a prototype vehicle and two had been fatigue tested in the laboratory. The cross members were fabricated from SAE 950X plate and consisted of a formed channel section and an internal fillet-welded diaphragm. Sections from each of the cross members were subjected to a complete analysis, including chemical analysis, magnetic particle testing, mechanical testing, scanning electron microscope/fractography, and metallography. The primary mode of failure was found to be fatigue cracking that initiated at the toes of the fillet welds. Secondary fatigue cracking occurred at the torque rod mounting holes. Failure was attributed to cyclic stresses at the weld toes that exceeded the lowered fatigue strength at this location. A design change that eliminated the fillet welds alleviated the problem.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047010
EISBN: 978-1-62708-234-1
... including a maraging steel (18% Ni, grade 250), a vanadium-modified 4337 gun steel (4337V), H19 tool steel, and high-temperature alloys Rene 41, Inconel 718, and Udimet 630. All the alloys evaluated had been used in mortar tubes previously or were known to meet the estimated minimum yield strength...
Abstract
When bulging occurred in mortar tubes made of British I steel during elevated-temperature test firing, a test program was formulated to evaluate the high-temperature properties (at 540 to 650 deg C, or 1000 to 1200 deg F) of the British I steel and of several alternative alloys including a maraging steel (18% Ni, grade 250), a vanadium-modified 4337 gun steel (4337V), H19 tool steel, and high-temperature alloys Rene 41, Inconel 718, and Udimet 630. All the alloys evaluated had been used in mortar tubes previously or were known to meet the estimated minimum yield strength. The alloys fall in this order of decreasing strengths: Udimet 630, Inconel 718, Rene 41, H19 tool steel, British I steel, 4337V gun steel, and maraging steel. When cycled between room temperature and 540 to 650 deg C (1000 to 1200 deg F), only Udimet 630, Inconel 718, and Rene 41 retained yield strengths higher than the minimum. Also, these three alloys maintained high strengths over the tested range, whereas the others decreased in yield strength as cycling progressed. Analysis showed Inconel 718 was considered best suited for 81-mm mortar tubes, and widespread industrial use ensured its availability.
1