1-20 of 60 Search Results for

high-strength extrusion alloys

Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001455
EISBN: 978-1-62708-234-1
... Abstract Aluminum alloy BS.1476-HE.15 by virtue of its high strength and low density finds application in the form of bars or sections for cranes, bridges, and other such structures where a reduction in dead weight load and inertia stresses is advantageous. Bars and sections in H.15 alloy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046015
EISBN: 978-1-62708-235-8
... Abstract A two-section extension ladder, made from 6061-T6 aluminum alloy extrusions and stampings that were riveted together at each rung location and at the ends of side rails, broke in service after having been used at the sites of several fires by the fire department of a large city...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
... to gather high-temperature properties data from different sources for H13 die steel and Al-6063 billet. Some assumptions have also been made which may affect life estimation. Apart from other fatigue parameters, it has been found that value of modulus of elasticity, E, and fatigue strength coefficient...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... stresses can occur in a tube produced by drawing, heat treating, and straightening operations. By varying the severity of these operations, it is possible to produce tubes with very low residual stresses or with very high residual stresses that are near the yield strength of the metal. In other words...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001691
EISBN: 978-1-62708-234-1
.... Never leave stagnant water in a system that is susceptible to corrosion; drain and dry the system if the water is not flowing. High-strength aluminum alloys depend on precipitated phases for strengthening and are susceptible to intergranular corrosion and pitting. Duraluminum-type alloys (Al-Cu...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... the required strength when the solution-treating temperature was lowered to 870 °C (1600 °F). Faulty Heat Treatment Mistakes made in heat treating hardenable alloys are among the most common causes of premature failure. Temperatures that are either too high or too low can result in the development...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... THIS VOLUME is organized according to four general categories of failure: fracture, corrosion, wear, and the subject of this article, distortion. One reason metals are so widely used as engineering materials is that they have high strength but also generally have the capability to respond to load (stress...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
...) fiber/filament, and (d) profile Typical Materials and Their Properties Materials to be used in extrusion are typically thermoplastics with high viscosities (low melt index) and high melt strengths. The typical melt flow index (MFI) for extruded thermoplastics ranges from <1 to ~10 g/10 min...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
..., such as high-draw-down-rate extrusion, high-speed calendering, and injection molding. Most processing conditions require materials with high molecular weights. This is especially true for extrusion and blow molding, which require sufficient melt strength for the extrudate to support itself as it exits from...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001103
EISBN: 978-1-62708-214-3
... by changing the bolt material to an alloy that offers more resistance to this failure mechanism. Although little guidance exists in the literature, it is generally true that resistance to SCC increases with an increase in copper content. Therefore, a high-tensile-strength nickel-aluminum bronze that does...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001024
EISBN: 978-1-62708-214-3
... Figure 1 shows a schematic of the rotor blade, indicating the approximate fracture location. The rotor blade is primarily an assembly of two types of components: a long, hollow spar made from a 6061-T651 aluminum alloy extrusion, which provides the necessary structural strength, and 26 fiberglass...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001366
EISBN: 978-1-62708-215-0
.... Room-temperature high-cycle bending fatigue testing was conducted on a specimen machined from the impeller at a maximum stress of 173 MPa (25 ksi) and R ratio of −1. The specimen failed after 9.5 × 10 6 cycles, which is typical of 7075-T6 aluminum alloy forgings. Binocular and SEM examination...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001707
EISBN: 978-1-62708-217-4
... (S13800), 15-5 PH (S15500), 17-4 PH (S17400), Custom 450 (S45000), Custom 455(S45500). The martensitic alloys only require a single step heat treatment to obtain maximum strength. Of these alloys, PH 13-8 Mo has often been specified for aerospace applications requiring high strengths (i.e...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... method is to increase the thermal gradient (often accomplished by increasing the solidification rate), which decreases the length of the mushy zone. This technique can be limited by alloy and mold thermal properties and by casting geometry, that is, the design of the casting. The fatigue strength...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... and may, in extreme cases, change the controlling process and growth mechanism. In one case, the fatigue-crack-growth rate for a small crack in a high-strength (4130) steel in a 3% sodium chloride solution was about ten times faster than that of long cracks at similar stress-intensity levels in the same...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... are anodic to the main body of the metal and therefore less resistant to corrosion because of precipitated phases, depletion, enrichment, or adsorption. In wrought high-strength heat treatable aluminum alloys, paths of stress-corrosion cracks are always intergranular, because the thermal treatments...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006800
EISBN: 978-1-62708-329-4
... material cost Function Examples of part features Aid manufacturing Fillets, gussets, ribs, slots, holes Add strength or rigidity (e.g., stiffen) Ribs, fillets, gussets, rods Reduce material use Windows or holes through walls, ribs that allow thinner walls, slots Provide...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... was secondary• Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) • Load exceeded the dynamic strength of the part• Check for proper alloy and processing as well as proper toughness, grain size• Loading direction may show failure was secondary or impact induced• Low...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003501
EISBN: 978-1-62708-180-1
... material cost Function Examples of part features Aid manufacturing Fillets, gussets, ribs, slots, holes Add strength or rigidity (e.g., stiffen) Ribs, fillets, gussets, rods Reduce material use Windows or holes through walls, ribs that allow thinner walls, slots Provide a connection...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
..., atypical rupture of a rupture disc. (b) SEM fractograph of a failed rupture disc, showing intergranular crack propagation. 554×. Source: Ref 11 Carbon or Alloy Steel and Tin Spacecraft separation springs were cold coiled from 13 mm (0.5 in.) 9254 alloy steel high-strength rod ( Ref 12...