1-20 of 108 Search Results for

high-speed tool steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001250
EISBN: 978-1-62708-223-5
... Abstract A broken cross-recessed die was examined. Examination of the unetched, polished section for impurities revealed several coarse streaks of slag. The purity did not therefore correspond to the requirements set for a high speed tool steel of the given theoretical quality DMo 5. After...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001269
EISBN: 978-1-62708-215-0
... 4.77 W 46.53 V 2.09 Co 0.40 (a) Balance Fe Discussion The final austenizing temperature prior to quenching for high speed tool steels such as M2 is typically 1177 to 1218 °C (2150 to 2225 °F). This temperature is near the eutectic melting point. Slight overheating...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
...-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006818
EISBN: 978-1-62708-329-4
.... This sensitivity to processing stems from the use of tools and dies at these very high hardness levels, at which minor deficiencies in processing exert major influences on performance. Mechanical Testing of Tool Steels For the majority of tool steels, tensile tests at room temperature are not conducted...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
.... Secondary groove (oxidation wear) 5. Outer metal chip notch 6. Inner chip notch (a) Chamfer 2 3 6 5 4 1 2 3 1 High-speed steel tool, thermal softening and plastic flow 1. Flank wear 2. Crater wear 3. Failure face Ceramic tool, chipping and fracture 4. Primary groove 5. Outer metal chip notch 6. Plastic flow...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089429
EISBN: 978-1-62708-223-5
... Abstract The failure of a high speed steel twist drill which caused injury to the user was investigated thoroughly to settle a legal suit. The drill was being used to remove a stud that broke in the vertical wall of a metalworking machine (upsetter) after drilling a pilot hole. The drill had...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
... with permission from Elsevier Fig. 10 Surface damage typical of galling wear on high-strength steel sheet material. Source: Ref 58 The tendency for galling is a limiting factor in many tribosystems ( Ref 55 ). As a severe form of adhesive wear, the galling of tools is a frequent and major...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
... tools. Using high-speed photography, these researchers determined that the velocity of a hammer head striking 16-penny nails being driven into wood by an experienced carpenter was 14 m/s (45 ft/s), and, furthermore, when striking a hammer against a steel anvil in a deliberate attempt to cause spalling...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001796
EISBN: 978-1-62708-241-9
... (molybdenum alloy high-speed tool steel) UNS T11350 M50NiL (low-carbon, carburizing bearing steel) UNS K91231 Introduction Tri-lobe cylindrical bearings are often installed on main shafts in relatively small power generator gas turbines to help in combating orbital slippage on rollers that can...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... temperature of the lubricant, which is 205 to 230 °C (400 to 450 °F) for the synthetic lubricants that are widely used at elevated temperatures. Molybdenum high-speed tool steels, such as M1, M2, and M10, are suitable for use to about 425 °C (800 °F) in oxidizing environments. Grades M1 and M2 maintain...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001755
EISBN: 978-1-62708-241-9
... fatigue fracture misalignment tungsten alloy steel fatigue cracking optical microscopy hardness T1 tungsten high-speed steel UNS T12001 Copper-based bearing alloys Background The ball bearing assembly consisted of an inner race, an outer race, a cage, and balls. This bearing supported...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001578
EISBN: 978-1-62708-233-4
... An induction furnace in a steel mill was used to heat and diffuse galvanize (zinc) into the steel strips. A loud, high pitch frequency would radiate from the steel plate during the induction heating process. When the sound began, vertical stripes would also appear on the plating. The stripes on the galvanized...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
... mechanisms Table 7 Materials and surface treatments developed to counteract wear mechanisms Wear mechanism Suitable materials Surface engineering Adhesive/tribo-oxidative wear Hard metals vs. hard metals Tool steels vs. tool steels Against high-strength steels: ceramics, polymer...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006935
EISBN: 978-1-62708-395-9
... (car bumpers, instrument panels, football helmets, tool housings) High flexural modulus (car structures, boat hulls, electrical component housings, pallets); can be achieved by material or design Low flexural modulus (pads, balls, ski boots, shoes) Resilience (seat pads, springs, flexible car...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... hydrofluoric acid. Nomarski differential interference contrast reveals the curvature at the edge of the specimen and water stains (arrows) along the edge of the specimen. Figure 6 shows a high-speed steel specimen in a phenolic mount, where a large shrinkage gap allowed the etchant, Vilella’s reagent...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001384
EISBN: 978-1-62708-215-0
... Abstract The draw-in bolt and collet from a vertical-spindle milling machine broke during routine cutting of blind recesses after a relatively long service life. The collet ejected at a high rotational speed due to loss of its vertical support and shattered one of its arms upon impact...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
...) for the synthetic lubricants that are widely used at elevated temperatures. Molybdenum high-speed tool steels, such as M1, M2, and M10, are suitable for use to approximately 425 °C (800 °F) in oxidizing environments. Grades M1 and M2 maintain satisfactory hardnesses to approximately 480 °C (900 °F...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
... interference contrast (DIC) reveals the curvature at the edge of the specimen and water stains (arrows) along the edge of the specimen. Figure 14 shows a high-speed steel specimen in a phenolic mount, where a large shrinkage gap is present, and the etchant, Vilella's reagent, has seeped out and now obscures...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001535
EISBN: 978-1-62708-232-7
... , 1990 , p 329 – 334 7. Gulayev A. , High-Speed Steels , Physical Metallurgy , Vol 2 , Mir Publishers , 1980 , p 87 – 101 8. Geller Y. , Carbide Inhomogeneity , Tool Steels , Mir Publishers , 1978 , p 197 – 214 9. Nakagawa M. , Hoshi A. , Asano...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001786
EISBN: 978-1-62708-241-9
... in a retaining ring groove that were accelerated to sudden failure when the tool post and chuck collided. spline shaft overload failure fatigue cracking carbon steel microcracking metallographic analysis fracture toughness 1035 (nonresulfurized carbon steel) UNS G10350 Introduction...