Skip Nav Destination
Close Modal
Search Results for
high-pressure compressors
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 56 Search Results for
high-pressure compressors
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001359
EISBN: 978-1-62708-215-0
... present in both include titanium, aluminum, molybdenum, tin, silicon, iron, calcium, and sodium. Abstract The cause of low fatigue life measurements obtained during routine fatigue testing of IMI 550 titanium alloy compressor blades used in the first stage of the high-pressure compressor...
Abstract
The cause of low fatigue life measurements obtained during routine fatigue testing of IMI 550 titanium alloy compressor blades used in the first stage of the high-pressure compressor of an aeroengine was investigated. The origin of the fatigue cracks was associated with a spherical bead of metal sticking to the blade surface in each case. Scanning electron microscope revealed that the cracks initiated at the point of contact of the bead with the blade surface. Energy-dispersive X-ray analysis indicated that the bead composition was the same as that of the blade. Detailed investigation revealed that fused material from the blade had been thrown onto the cold blade surface during a grinding operation to remove the targeting bosses from the forgings, thereby causing local embrittlement. It was recommended that extreme care be taken during grinding operations to prevent the hot, fused particles from striking the blade surface.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001364
EISBN: 978-1-62708-215-0
.... A centrifugal refrigeration system depends upon centrifugal force to compress the refrigerant vapors. The impeller of the centrifugal compressor draws in vapor near the shaft and discharges at a high velocity at the outside edge of the impeller. The high velocity is converted into pressure. When the pressure...
Abstract
An investigation of the impeller and deposit samples from a centrifugal compressor revealed that an aluminum IR-12 refrigerant reaction had occurred, causing extensive damage to the second-stage impeller and contaminating the internal compressor components. The spherical surface morphology of the impeller fragments suggested that the aluminum had melted and resolidified. The deposits were similar in composition and were identified by XRD as consisting primarily of aluminum trifluoride. In addition, EDS analysis detected major amounts of chlorine and iron. Results of a combustion test indicated that the compressor deposit was comprised of a 9. 8 wt% carbon and that the condenser deposit contained 8.7 wt% carbon. It was concluded that the primary cause of failure was the rubbing of the impeller against the casting and that a self-sustaining Freon fire had occurred in the failed compressor
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001408
EISBN: 978-1-62708-220-4
... of severance the structure of the material had been profoundly modified by the high temperature it had attained. The structure, shown in Fig. 3 , was of the Widmanstätten type, and the extent of the grain growth that had taken place will be apparent on comparing this illustration with Fig. 2 . The structural...
Abstract
Initially, two vertical double-acting two-stage compressors delivering chlorine gas at a pressure of 100 psi appeared to be running satisfactorily. About six months later the LP piston-rod of the No. 2 compressor failed due to burning, the compressor being worked double-acting at the time. About five months later, the HP piston rod of the No. 1 compressor failed in a similar manner. Specimens for microscopic examination were cut from the rod in the region of the failure and from the extreme end that had been situated above the piston and hence not subjected to an appreciable rise in temperature. The material was a steel in the normalized condition with a 0.35% C content. It appears probable that deficient lubrication of the gland resulted in overheating of the rod due to friction. The presence of a sprayed-metal coating was probably an additional factor in promoting failure, as it would present to the gas a surface area considerably greater than that of a homogeneous material.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001476
EISBN: 978-1-62708-229-7
... High-temperature corrosion and oxidation The aftercooler concerned in this mishap was of conventional design, approximately 4 ft. 3 in. long × 10 in. diameter, and fitted with 5 8 in. diameter brass tubes through which cooling-water circulated. Air at 100 lb. per sq. in. pressure...
Abstract
An aftercooler was of conventional design and fitted with brass tubes through which cooling-water circulated. Air at 100 psi pressure was passed over the outsides of the tubes, entering the vessel near to the upper tubeplate on one side and leaving it by a branch adjacent to the lower tubeplate on the opposite side. After a mishap, the paint had been burned off the upper half of the shell. Internally, most of the tubes were found to be twisted or bent. The casing of the pump used to circulate the cooling water was also found to be cracked after the mishap. All the evidence pointed to the probability that a fire had occurred within the vessel. Some months before the failure, one of the tubes situated towards the center of the nest developed a leak. Owing to the difficulty of inserting a replacement tube, the defective one was scaled by means of a length of screwed rod fitted with nuts and washers at each end. This assembly became loose, thereby allowing air under pressure to enter the waterside of the cooler and expel the water, leading to overheating and ultimately to the damage described.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001099
EISBN: 978-1-62708-214-3
..., or expansion, valve) to the evaporator, where heat is withdrawn from the system to be cooled and transferred to the reduced-pressure evaporating fluid refrigerant, thus completing the cycle. For the pressurizing (compression) step, centrifugal or turbine-type kinetic compressors are often used in high...
Abstract
Uncoated high-strength alloy steel cap screws retaining a cast aluminum (356.0) diffuser assembly in a centrifugal refrigerant compressor failed in a brittle manner a short time after the system was placed in operation. Evidence obtained during the failure analysis indicated that the failures were the result of hydrogen embrittlement produced by galvanic corrosion and attendant evolution of hydrogen at the dissimilar junction, which was also the site of the highest tensile stress. Suggested measures for minimizing recurrences included use of lower-strength, galvanically-compatible fasteners and appropriately-applied and treated compatible coatings.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047220
EISBN: 978-1-62708-220-4
... that could have contributed to the fractures. Conclusions Brittle fracture of the teeth of the gray iron gear resulted from high-impact loading that arose from the sudden starts and stops of the compressor. During subsequent rotation, fragments broken from the gray iron gear damaged the mating ductile...
Abstract
Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron with a tensile strength of 290 MPa (42 ksi) at 207 HRB. The smaller gear was sand cast from ASTM A536, grade 100-70-03, ductile iron with a tensile strength of 696 MPa (101 ksi) at 241 HRB. Analysis (metallographic examination) supported the conclusion that excessive beam loading and a lack of ductility in the gray iron gear teeth were the primary causes of fracture. During subsequent rotation, fragments of gray iron damaged the mating ductile iron gear. Recommendations included replacing the large gear material with ASTM A536, grade 100-70-03, ductile iron normalized at 925 deg C (1700 deg F), air cooled, reheated to 870 deg C (1600 deg F), and oil quenched. The larger gear should be tempered to 200 to 240 HRB, and the smaller gear to 240 to 280 HRB.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001596
EISBN: 978-1-62708-225-9
... over the life of the product. To accelerate the test, the pressures in the system are increased, stated as low and high side pressure. Typical high and low side pressures under normal conditions are 10 kgf/cm 2 and 0 kgf/cm 2 (designated 10/0), respectively. To accelerate the tests, compressors...
Abstract
During testing of compressors under start/stop conditions, several helical suspension springs failed. The ensuing failure investigation showed that the springs failed due to fatigue. The analysis showed that during start/stop testing the springs would undergo both a lateral and axial deflection, greatly increasing the torsional stresses on the spring. To understand the fatigue limits under these test conditions, a bench test was used to establish the fatigue strength of the springs. The bench tests showed that the failed springs had an unacceptable surface texture that reduced the fatigue life. Based on an understanding of the compressor motion, a Monte Carlo model was developed based on a linear damage theory to predict the fatigue life of the springs during start/stop conditions. The results of this model were compared to actual test data. The model showed that the design was marginal even for springs with acceptable surface texture. The model was then used to predict the fatigue life requirements on the bench test such that the reliability goals for the start/stop testing would be met, thus reducing the risk in qualifying the compressor.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001578
EISBN: 978-1-62708-233-4
... height prevented the excitation of the window, and these combined actions solved both the noise and vibration issues. Part II—Turbines, Pumps, and Compressors Case #1: High Vibration on a High Pressure Core Injection Pump at a Nuclear Plant Operators of nuclear power plants are required...
Abstract
Vibration analysis can be used in solving both rotating and nonrotating equipment problems. This paper presents case histories that, over a span of approximately 25 years, used vibration analysis to troubleshoot a wide range of problems.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001470
EISBN: 978-1-62708-220-4
... of fatigue cracks. Failure of the one impeller and the cracking of the others were attributed to “low-cycle high-strain fatigue” due to fluctuating circumferential (hoop) stresses. Centrifgual pumps Impellers Stresses 2.5Ni-Cr-Mo Fatigue fracture One impeller of a two-stage centrifugal air...
Abstract
One 49-in. impeller of a two-stage centrifugal air compressor disrupted without warning, causing extensive damage to the casings, the second impeller, and the driving gear box. Prior to the mishap, the machine had run normally, with no indications of abnormal vibration, temperature, or pressure. Initial failure had taken place in the floating dished inlet plate (eye plate) of the first-stage impeller. Failure occurred predominantly by tearing along the lines of rivet holes for the longer blades, these extended for practically the full radial width of the dished plate. Examination of the fractured surfaces showed that failure had been preceded by fatigue cracking. The material from which the dish plate was forged was a Ni-Cr-Mo steel in the oil hardened and tempered condition. Fractographic examination of the surface of the cracks showed striation markings indicative of the progress of fatigue cracks. Failure of the one impeller and the cracking of the others were attributed to “low-cycle high-strain fatigue” due to fluctuating circumferential (hoop) stresses.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001354
EISBN: 978-1-62708-215-0
... the high-pressure portion of a steam turbine-powered compressor after nondestructive testing revealed cracks in the shoulder of the disk during a scheduled outage. Samples containing cracks were examined using various methods. Multiple cracks, primarily intergranular were found on the inlet and outlet...
Abstract
An A-470 steel rotor disk was removed from the high-pressure portion of a steam turbine-powered compressor after nondestructive testing revealed cracks in the shoulder of the disk during a scheduled outage. Samples containing cracks were examined using various methods. Multiple cracks, primarily intergranular were found on the inlet and outlet faces along prior-austenite grain boundaries. The cracks initiated at the surface and propagated inward. Multiple crack branching was observed. Many of the cracks were filled with iron oxide. X-ray photoelectron spectroscopy indicated the presence of sodium on crack surfaces, which is indicative of NaOH-induced stress-corrosion cracking. Failure was attributed to superheater problems that resulted in caustic carryover from the boiler. Two options for disk repair, installing a shrink-fit disk or applying weld buildup, were recommended. Weld repair was chosen, and the rotor was returned to service; it has performed for more than 1 year without further incident.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... and power turbines and, in some cases, the aft-most stages of the compressor. Therefore, creep-resistant nickel and cobalt-base superalloys are typically used for components in these high-temperature regions of the gas turbine. There are multiple mechanisms by which creep manifests in a material...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
... and to conduct microstructural and fractographic analyses of aircraft components. Light optical microscopes, such as inverted microscopes and stereoscopes, are useful to examine features at low and intermediate magnifications. Scanning electron microscopes are commonly relied on for high-magnification...
Abstract
This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001756
EISBN: 978-1-62708-241-9
... analysis corresponds to the high-pressure (HP) turbine blades of a low bypass turbofan engine with afterburner. It is a twin spool engine of 40-kN thrust class with multistage axial fan and compressor each driven separately by single stage turbines. It has an annular type combustion system incorporating...
Abstract
The failure of HP turbine blades in a low bypass turbofan engine was analyzed to determine the root cause. Forensic and metallurgical investigations were conducted on all failed blades as well as failed downstream components. It was found that one of the blades fractured in the dovetail region, causing extensive damage throughout the turbine. Remedial measures were suggested to prevent such failures in the future.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... (10 miles) downstream of a gas compressor station, which is the high-temperature region on a gas pipeline. Applying a good coating to the pipe surface is also a deterrent, as is shot peening the pipe surface to remove mill scale and to provide a good surface for coating bonding. Small pressure...
Abstract
This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also reviewed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001518
EISBN: 978-1-62708-228-0
... is not skived off prior to fitting the coupling, although on certain brand high-pressure hoses the rubber is skived off to reveal the wire braid prior to fitting the coupling. There does not appear to be any difference in propensity for corrosion between the two methods, providing the coupling has been...
Abstract
A fireball engulfed half of a drill rig while in the process of drilling a shot hole. Subsequent investigation revealed the cause of the fire was the failure of the oil return hose to the separator/receiver in the air compressor. The failed hose was a 50.8 mm 100R1 type hose, as specified in AS 3791-1991 Hydraulic Hoses. This type of hose consisted of an inner tube of oil-resistant synthetic rubber, a single medium-carbon steel wire braid reinforcement, and an oil-and-weather resistant synthetic rubber cover. The wire braiding was found to be severely corroded in the area of the failure zone. The physical cause of the hose failure was by severe localized corrosion of the layer of reinforcing braid wire at the transition between the coupling and the hose at the end of the ferrule. This caused a reduction of the wire cross-sectional area to the extent that the wires broke. Once the majority of the braid wires were broken there was not enough intrinsic strength in the rubber inner hose to resist the normal operating pressures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001281
EISBN: 978-1-62708-215-0
... Representative leading (a) and trailing (b) edges of the nozzles. Abstract The first-stage nozzles of a high-pressure turbine section of an industrial gas turbine exhibited leading and trailing-edge deterioration. The nozzles were made of X-40, a cobalt-base alloy, and were aluminide coated. Failure...
Abstract
The first-stage nozzles of a high-pressure turbine section of an industrial gas turbine exhibited leading and trailing-edge deterioration. The nozzles were made of X-40, a cobalt-base alloy, and were aluminide coated. Failure analysis determined that the deterioration was the result of hot corrosion caused by a combination of contaminants, cooling-hole blockage, and coating loss.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001232
EISBN: 978-1-62708-233-4
... low ( Figs. 2 , 3 , 4 ), but a large fraction if the stress was high ( Figs. 7 and 8 ). A vibrational fracture which propagates quickly can loose its characteristic form and is then no longer recognisable as such with certainty. This is referred to as a “fracture for finite life”. Fig. 1...
Abstract
A bolt breaks along a change in cross section well below its rated capacity. An anchoring screw spins freely in place, having snapped at its first supporting thread. A motor unexpectedly disengages its load, its driveshaft having fractured near a keyway. Such failures – involving axles, leaf springs, engine rods, wing struts, bearings, gears, and more – can occur, seemingly without cause, due to vibrational fracture. Vibrational fractures begin as cracks that form under cyclic loading at nominal stresses which may be considerably lower than the yield point of the material. The fracture is proceeded by local gliding and the development of cracks along lattice planes favorably orientated with respect to the principal stress. This non-reversible process is often misleadingly called “fatigue” and presents significant challenges to engineering teams that ill-advisedly take to searching for material faults. Several examples of notch-induced vibrational fractures are presented along with guidelines for investigating their cause.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... in organizations, either in the services, or in manufacturing, operating, or administering products, processes, and systems ( Ref 10 ). The intent is to provide not only products and systems that garner high customer satisfaction, but also that increase productivity, reduce costs, and meet delivery requirements...
Abstract
This article briefly introduces the concepts of failure analysis and root cause analysis (RCA), and the role of failure analysis as a general engineering tool for enhancing product quality and failure prevention. It reviews four fundamental categories of physical root causes, namely, design deficiencies, material defects, manufacturing/installation defects, and service life anomalies, with examples. The article describes several common charting methods that may be useful in performing an RCA. It also discusses other failure analysis tools, including review of all sources of input and information, people interviews, laboratory investigations, stress analysis, and fracture mechanics analysis. The article concludes with information on the categories of failure and failure prevention.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... then forge welded together. The pipe was heated to high temperatures, typically above 1350 °C (2460 °F) ( Ref 5 ). The weld seam area was compressed between a stationary welding ball on the inner surface and forging rollers on the outer surface to apply pressure to the mating surfaces. This application...
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... ). However, wear rather than fatigue can be a problem in bearing housings. Thin-shell bearings are used universally in diesel engines, and such bearings involve an interference fit between the bearing and the housing. If the contact pressure is not high enough, movement can occur, giving rise to the fretting...
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
1