Skip Nav Destination
Close Modal
Search Results for
high-energy-rate forging
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 86 Search Results for
high-energy-rate forging
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... that originated in an area of abnormally high hardness. Although fatigue marks were not observed, the fact was that the fracture did not occur in a single cycle but required several cycles to cause failure. Example 2: Fatigue Fracture that Originated on the Ground Surface of a Medium- Carbon Steel Forging...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... Because of their low density and high potential strength, aluminum forgings are found in automotive and aerospace applications. Like titanium, aluminum is highly strain-rate sensitive. In production with high-strain-rate tools such as hammers and mechanical presses, the rapid delivery of energy can cause...
Abstract
The primary purpose of this article is to describe general root causes of failure that are associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be common sources of failure-inducing defects in the bulk working of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
...-carbon ferrite exist with dispersed high-carbon carbides. Figure 7 shows that for a specific microstructure the Ac 3 increases with heating rate, a consequence of the shorter processing times at the higher heating rates, and the corresponding need to heat the samples to higher temperatures to achieve...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001302
EISBN: 978-1-62708-215-0
... roughing die, where it was given a single large deformation at a high strain rate. The partially-formed kingpin was then moved to the finishing die and given a smaller deformation at a slower strain rate. The final piece was trimmed of flash and dropped in a steel bin to cool. It was then reaustenitized...
Abstract
To forged AISI 4140 steel trailer kingpins fractured after 4 to 6 months of service. Fractographic and metallographic examination revealed that cracks were present in the spool-flange shoulder region of the defective kingpins prior to installation on the trailers. The cracks grew and coalesced during service. Consideration of the manufacturing process suggested that the cracks were the result of overheating of the kingpin blanks prior to forging, which was exacerbated during forging by deformation heating in the highly-strained region. This view was supported by results of two types of tensile tests conducted near the incipient melting temperature at the grain boundaries. All kingpins made by the supplier of the fractured ones were ultrasonically inspected and six more anticipated to fail were found. It was recommended that the heating of forging blanks be more carefully controlled, especially with respect to the accuracy of the optical pyrometer temperature readout. Also, procedures must be developed such that forging blanks that trigger the over-temperature alarm are reliably and permanently removed from the production line.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001615
EISBN: 978-1-62708-235-8
... in the intermediate stage of the forging preform, which subsequently increased in the final stage. A high upset strain during forging, especially in the final stage, accentuated the center burst by high lateral flow of the metal. It was concluded that the center burst of the axle forging resulted from a high...
Abstract
Carbon steel axle forgings were rejected due to internal cracks observed during final machining. To determine the cause of the cracks, the preforms of the forging were analyzed in detail at each stage of the forging. The analysis revealed a large central burst in the intermediate stage of the forging preform, which subsequently increased in the final stage. A high upset strain during forging, especially in the final stage, accentuated the center burst by high lateral flow of the metal. It was concluded that the center burst of the axle forging resulted from a high concentration of nonmetallic inclusions in the central portion of the raw bar stock rather than the usual problem of improper forging temperature. Strict control over the inclusion content in the raw material by changing the vendor eliminated the problem.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001815
EISBN: 978-1-62708-241-9
...; however, the service temperatures were well below the creep range for high copper alloys (i.e., >150 °C), and no uniform creep voids were observed in the microstructures [ 2 ]. Therefore, this mechanism was considered unlikely and not pursued any further. Slow Strain Rate A journal article...
Abstract
Copper electrical feedthrough pins used in a bolting application in a refrigeration compressor had functioned without failure for years of production and thousands of units. When some of the pins began to fail, an investigation was conducted to determine the cause. Visual examination revealed that the observed fractures were mixed brittle intergranular with ductile microvoid dimples. An extensive analysis of failed samples combined with a process of elimination indicated that the fractures were due to stress-corrosion cracking caused by an unidentified chemical species within the sealed compressor chamber. A unique combination of applied stress, residual stress, stress riser, and grain size helped isolate the failure mechanism to a single production lot of material.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001079
EISBN: 978-1-62708-214-3
... was required to remove unconsolidated and high-impurity segregated material from the center. This bore also facilitated ultrasonic inspection of the forging volume from the bore side for defects buried near it. Such rotors experience high centrifugal tangential stresses at the bore due to High-speed rotation...
Abstract
Numerous flaws were detected in a steam turbine rotor during a scheduled inspection and maintenance outage. A fracture-mechanics-based analysis of the flaws showed that the rotor could not be safely returned to service. Material, samples from the bore were analyzed to evaluate the actual mechanical properties and to determine the metallurgical cause of the observed indications. Samples were examined in a scanning electron microscope and subjected to chemical analysis and several mechanical property tests, including tensile, Charpy V-notch impact, and fracture toughness. The material was found to be a typical Cr-Mo-V steel, and it met the property requirements. No evidence of temper embrittlement was found. The analyses showed that the observed flaws were present in the original forging and attributed them to lack of ingot consolidation. A series of actions, including overboring of the rotor to remove indications close to the surface and revision of starting procedures, were implemented to extend the remaining life of the rotor and ensure its fitness for continued service.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... operation. For example, if it is suspected that a component was exposed to higher-than-typical temperature, it is useful to compare the rate of base alloy aging with other components of the same type from other turbines. Creep Localized Overheating (Melting) Thermal-Mechanical Fatigue High-Cycle...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
..., a not-quite-linear correlation was found between the lower yield strength and the number of grains containing twins, leading to the argument that twinning initiates at the yield stress with no further increase in the number of twins. Note that this is different from twinning initiated due to high strain-rate...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
...-linear correlation was found between the lower yield strength and the number of grains containing twins, leading to the argument that twinning initiates at the yield stress with no further increase in the number of twins. Note that this is different from twinning initiated due to high strain rate...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001536
EISBN: 978-1-62708-229-7
... at damaged surface of failed wear ring. The corrosion rate of nickel in a high-purity nuclear reactor coolant environment containing less than 0.02 ppm dissolved oxygen has been experimentally determined to be about 2.5 to 5.0 µm/year (0.1 to 0.2 mils/year) under dynamic conditions. 13 However...
Abstract
Argonne National Laboratory has conducted analyses of failed components from nuclear power-generating stations since 1974. The considerations involved in working with and analyzing radioactive components are reviewed here, and the decontamination of these components is discussed. Analyses of four failed components from nuclear plants are then described to illustrate the kinds of failures seen in service. The failures discussed are (1) intergranular stress-corrosion cracking of core spray injection piping in a boiling water reactor, (2) failure of canopy seal welds in adapter tube assemblies in the control rod drive head of a pressurized water reactor, (3) thermal fatigue of a recirculation pump shaft in a boiling water reactor, and (4) failure of pump seal wear rings by nickel leaching in a boiling water reactor.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... swelling. Generally, this condition is harmful only when the tubing material has marginal strength or is stressed to an extent that results in measurable deformation. An instance of improper heat treatment involved a pressure vessel made from forged HY-100 high-strength alloy steel plates that were...
Abstract
This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... of techniques discussed herein is the most commonly used by failure analysts but is by no means exhaustive. The focus of this article is on the various types of static load testing, hardness testing, and impact testing. Other specialized testing, such as wear testing, dynamic (high-strain-rate) testing...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... plastic deformation that would induce residual stresses or damage the pipe. One of the failure problems unique to gas pipelines was the potential length of a failure. Because the pressurized gas contains an enormous amount of stored energy and because the energy-release rate upon rupture is often slow...
Abstract
This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also reviewed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
... temperature and reducing with increasing strain rate. Such behavior is likely associated with billet flow stress, which reduces with temperature and increases with strain rate. High-flow stress results in high die stresses/strains and hence more susceptible to short life. Small die fillet radius severely...
Abstract
Several failed dies were analyzed and the results were used to evaluate fatigue damage models that have been developed to predict die life and aid in design and process optimization. The dies used in the investigation were made of H13 steels and fractured during the hot extrusion of Al-6063 billet material. They were examined to identify critical fatigue failure locations, determine corresponding stresses and strains, and uncover correlations with process parameters, design features, and life cycle data. The fatigue damage models are based on Morrow’s stress and strain-life models for flat extrusion die and account for bearing length, fillet radius, temperature, and strain rate. They were shown to provide useful information for the analysis and prevention of die failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... pools, a chloride-rich environment may also develop unintentionally, such as when chlorides leach from some wet or moist insulation material. Process piping and vessels are insulated to minimize temperature variations, improve energy efficiency, and for protection of personnel. Because of the high...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... values of this parameter for maraging steels heat treated to various yield strengths and then exposed to aqueous environments are given subsequently in this article, along with a general description of the relationship of the rate of cracking to stress intensity for maraging steels and for other high...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0089617
EISBN: 978-1-62708-232-7
... into the mold, beginning at the bell end. The mold continued to spin while moving at a steady rate away from the end of the trough, so that the spigot end of the mold was poured last. After the pipe had cooled to 760 to 870 °C (1400 to 1600 °F), it was pulled out from the bell end of the mold, and the procedure...
Abstract
A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten metal, flowing through a trough, was poured into the mold beginning at the bell end and ending with the spigot end being poured last. After the pipe had cooled, it was pulled out from the bell end of the mold, and the procedure was repeated. Investigation supported the conclusion that failure of the mold surface was the result of localized overheating caused by splashing of molten metal on the bore surface near the spigot end. In addition, the mold-wash compound (a bentonite mixture) near the spigot end was too thin to provide the proper degree of insulation and to prevent molten metal from sticking to the bore surface. Recommendations included reducing the pouring temperatures of the molten metal and spraying a thicker insulating coating onto the mold surface.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... If temporary or permanent repairs, physical modifications, or rating (pressure/temperature) changes are needed Satisfying code and regulatory requirements Good engineering and safe work practice considerations. Current risk to other similar equipment could also be identified. Often, the root cause...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.