1-20 of 23 Search Results for

hexagonal close-packed

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
... the Co must have been removed to the surface by a diffusion process. The Co-Cr alloy with 19 wt. % Fe will transform from the face-centered cubic structure to the hexagonal-close packed ε structure upon cooling below about 800°C [ 20 ]. It is expected that the phase change will occur during cycling...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... of the average grain diameter (Hall-Petch equation). The fracture path is usually intergranular in polycrystalline metals having cubic crystal structures and is frequently transgranular in hexagonal close-packed metals. Changes in the alloy composition of either the structural or the embrittling metal can...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001803
EISBN: 978-1-62708-241-9
... due to stress corrosion. For hexagonal close-packed metals, the dislocation structure and cyclic behavior are more sensitive to crystal orientation than are cubic metals because their anisotropic properties produce diverse microfractographic features. [ 35 – 37 ] Fig. 3 Scanning electron...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... atoms typically result in a crystalline structure, which in most engineering metals are face-centered cubic (fcc), body centered cubic (bcc), or hexagonal close-packed (hcp) structures. The formation of crystal lattices occurs as a result of bonding between atoms. Strong bonding forces between atoms...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... are rotated with respect to each other (polycrystalline). In most metals, metallic bonds between atoms typically result in a crystalline structure, which in most engineering metals are face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) structures. The formation...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... is usually intergranular in polycrystalline metals having cubic crystal structures and is frequently transgranular in hexagonal close-packed metals. Changes in the alloy composition of either the structural or the embrittling metal have a strong influence on the embrittlement severity and extent...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
...-centered cubic (bcc) structure, deformation generally is strain-rate sensitive. Thus, their reaction to cavitation is always a competition between flow and fracture. When pure iron is subjected to cavitation, it exhibits both brittle and ductile failure mechanisms. For hexagonal close-packed (hcp...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
..., it expands the resolution range by more than one order of magnitude to approximately 10 nm in routine instruments, with ultimate values below 3 nm. Useful magnification thus extends beyond 10,000× up to 100,000×, closing the gap between the optical and the transmission electron microscope. Compared...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
.... Useful magnification thus extends beyond 10,000× up to more than 100,000×, closing the gap between the light microscope and the transmission electron microscope. The depth of focus, ranging from 1 μm at 10,000× to 2 mm (0.08 in.) at 10×, is more than 2 orders of magnitude larger than for light microscopy...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... close-packed, or hcp zinc) as well as nonmetallic materials (NaCl) seemed to indicate that cleavage could be predicted by a critical normal stress law (Sohnke's law) ( Ref 2 ) dating from 1869. References 3 , 4 , 5 contain data and discussion of this early work. Similarly, plastic deformation...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... bellows, and battery-flash unit is capable of producing excellent results. It may be desirable to supplement the 35-mm equipment with an instant camera and close-up lenses. Techniques and lighting are discussed in more detail in the article “Photography in Failure Analysis” in this Volume. When...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... lattices: face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal close-packed (hcp). An increase in strain rate or a decrease in temperature increases the likelihood of twinning. The fcc metals twin only with difficulty and generally do not fracture by cleavage. See text for discussion...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... with typical spiral deformation texture. SEM. (b) Close-up of fracture surface with shear dimples oriented in twisting direction. (c) Fracture edge with flow lines. (d) Longitudinal metallographic section through fracture surface. Deformation zone from shearing is adjacent to the fracture edge. Original...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... or no material displaced to the sides of the grooves. This mechanism closely resembles conventional machining. Fragmentation occurs when material is separated from a surface by a cutting process, and the indenting abrasive causes localized fracture of the wear material. These cracks then freely propagate...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... and often second-phase particles and constituents as well as grain boundaries, all of which affect the fracture nucleation and growth process. Fig. 1 Single-crystal chisel point. Source: Ref 19 Early work using metallic materials of low symmetry (rhombohedral bismuth; hexagonal close-packed...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... propagation direction parallel to shear lips Mixed-mode fracture (incomplete constraint) Tightly closed crack on surface Possible cyclic loading Possible processing imperfection, e.g., from shot peening, quench cracks Radial marks and chevrons (v-shape) Point toward crack initiation...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003510
EISBN: 978-1-62708-180-1
... is to be superimposed on a transformation diagram, a CCT, not a TTT, diagram should be used. Metallurgical Crystal Structure When steel is slowly cooled, it undergoes a crystal structure (size) change as it transforms from a more densely packed austenite (face-centered cubic, or fcc) to a less densely packed...