1-20 of 29 Search Results for

helical gears

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... Abstract This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0009190
EISBN: 978-1-62708-225-9
... Abstract In an industrial application, 24 speed-increaser gearboxes were used to transmit 258 kW (346 hp) and increase speed from 55 to 375 rev/min. The gears were parallel shaft, single helical, carburized, and ground. The splash lubrication system used a mineral oil without antiscuff...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
... cylinder is the imaginary cylinder in a gear that rolls without slipping on a pitch cylinder or pitch plane of another gear). Fig. 1 Sections of a spur gear (a) and a spur rack (b). Helical Gears Helical gears ( Fig. 2a ) are used to transmit motion between parallel or crossed shafts...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001473
EISBN: 978-1-62708-229-7
... of the electrical load via the works' busbars, facilities being provided to enable them to be connected to the public authority supply if the set had to be taken out of service. The gearbox was of conventional design incorporating single reduction, double helical gearing and it had operated satisfactorily for five...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001291
EISBN: 978-1-62708-215-0
... Fig. 1 Main landing gear sliding strut provided for destructive examination. Arrow indicates region that was hard chromium plated. Wheel axle is at lower end. Fig. 2 Indications of cracking in the hard chromium plating (arrow) at the axle (lower) end. Note the banded appearance...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... that are higher than expected. Note that the stresses a given spring can withstand are greatly affected by the operating environment. For example, helical springs made of 6150 steel provided failure-free service in fuel-injection pumps when the fuel oil being pumped was a normal low-sulfur grade. However, several...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001504
EISBN: 978-1-62708-217-4
... be used as the basis for inspection or maintenance intervals. Main Landing Gear Axle of a Transport Aircraft During a training flight landing, one of the axles of the main landing gear of a light transport aircraft fractured in a complex helical manner around the lock pin hole at the bottom centre...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... rolling contact (sliding to left and rolling to right). Fatigue cracks initiate at surface. Source: Ref 11 Fig. 9 Pitting on helical gear teeth caused by contact fatigue. Pitting cracks frequently initiate subsurface. Source: Ref 12 Fig. 10 Large circular spall on forged, hardened...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
...: 132×. Source: Ref 12 Fig. 8 Unetched metallographic cross section through hardened steel roller test specimen with sliding plus rolling contact (sliding to left and rolling to right). Fatigue cracks initiate at surface. Source: Ref 11 Fig. 9 Pitting on helical gear teeth caused...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001485
EISBN: 978-1-62708-225-9
... the effect described as pitting or flaking. I may be mentioned in passing that this mode of failure is similar to that found on the flanks of gear teeth, where it is believed that the hydrostatic pressure of the lubricant which is forced into the initial cracks is a factor facilitating the detachment...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001813
EISBN: 978-1-62708-180-1
... are generally caused by operation of springs at stresses that are higher than expected. It must be kept in mind, however, that the stresses a given spring can withstand are greatly affected by the operating environment. For example, helical springs made of 6150 steel provided failure-free service in fuel...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
... that contains the gear); ( b ) fracture surface (section of the shaft that contains the bearing) Fig. 1 Excerpt from the assembly drawing showing the position of the broken shaft Fig. 4 General view of one of the fractures showing typical evidence of fatigue initiation and propagation...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... in torsion may buckle into a helical configuration when a critical moment is exceeded. Creep or distortion from other causes may change the dimensions of a structure so that it becomes susceptible to buckling. Further details can be found in references such as Ref 4 . Safety Factors In both classical...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
..., circular shaft in torsion may buckle into a helical configuration when a critical moment is exceeded. Creep or distortion from other causes may change the dimensions of a structure so that it becomes susceptible to buckling. Further details can be found in references such as Ref 5 . Safety Factors...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... resulting from rotation of the bearing ultimately leads to the initiation of fatigue cracks, and fragments of metal become detached to produce the effect described as pitting or flaking. This type of failure is similar to that found on the flanks of gear teeth. In addition to load, the pitting or flaking...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... be remembered that some parts are designed to fracture under certain circumstances. Not doing so may constitute the failure. Shear pins, for example, are commonly used to protect valuable equipment by acting as mechanical fuses. Stress directors in helicopter gearing are also designed so that if gear tooth...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... by acting as mechanical fuses. Stress directors in helicopter gearing are also designed so that if gear tooth fracture occurs, only half the tooth breaks off. This leaves the other half of the gear tooth to carry the load, simultaneously creating sufficient vibration to warn the pilot of imminent failure...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... Abstract The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting...