1-20 of 180 Search Results for

heat-resisting casting alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 55 Cast heat-resistant alloy HH, type II, showing the effects of long-term exposure to temperatures between 705 and 925 °C (1300 and 1700 °F) More
Image
Published: 01 January 2002
Fig. 56 Cast heat-resistant alloy HH, type II, showing cracking through intergranular carbides More
Image
Published: 01 January 2002
Fig. 57 Sigma (σ) phase in cast heat-resistant alloy HH, type II. Intermetallic phases, such as σ, can greatly reduce the ductility of many high-temperature alloys in service at temperatures from 480 to 955 °C (900 to 1750 °F). More
Image
Published: 30 August 2021
Fig. 31 Cast heat-resistant alloy HH, type II, showing the effects of long-term exposure to temperatures between 705 and 925 °C (1300 and 1700 °F) More
Image
Published: 30 August 2021
Fig. 32 Cast heat-resistant alloy HH, type II, showing cracking through intergranular carbides More
Image
Published: 30 August 2021
Fig. 33 Sigma (σ) phase in cast heat-resistant alloy HH, type II. Intermetallic phases, such as σ, can greatly reduce the ductility of many high-temperature alloys in service at temperatures from 480 to 955 °C (900 to 1750 °F). More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001809
EISBN: 978-1-62708-241-9
... to dealloying. Temper-anneal heat treatment further diminishes dealloying by creating a microstructure that is more dealloying resistant [ 2 ]. Furthermore, ASTM B148, specification for aluminum– bronze sand castings, stipulates heat treatment of alloy C95800 to increase corrosion resistance...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001224
EISBN: 978-1-62708-232-7
... Abstract A recuperator for blast heating of a cupola furnace became unserviceable because of the brittle fracture of several finned tubes made of heat resistant cast steel containing 1.4C, 2.3Si and 28Cr. The service temperature was reported as 850 deg C. This led to the suspicion...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... and decarburization. Both of these definitions apply equally well to a casting or a weldment. Proper selection of casting process, alloy selection, part and mold design, solidification control, and grain refinement minimize hot cracking problems. Hot strength (resistance to cracking at solidification temperature...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001083
EISBN: 978-1-62708-214-3
... resistance because of its higher hardness, whereas CA-15 would likely be the most economical of the three. All of these alloys require heat treatment after casting. Tempering heat treatments should be selected that yield tensile strengths in the range of 690 to 790 MPa (100 to 115 ksi). Heat treatments...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001394
EISBN: 978-1-62708-234-1
... and is apparently a proprietary alloy. High chromium-nickel alloys of this composition mostly find application as heat-resisting alloys. To those of a lower chromium and/or nickel content an addition of molybdenum is usually made in order to improve their corrosion resistance. The pump had been in use...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001712
EISBN: 978-1-62708-234-1
... or carbonitrides, however these effects were not quantified in the references cited. Moreover, no mention was found on the effect of nitridation on alloy density. Therefore, the experiment was designed to help determine the effects of major elements Ni, Cr, Co, and Fe in cast heat resistant alloys. Ten alloys...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091617
EISBN: 978-1-62708-220-4
.... Recommendations included eliminating the chlorides from the system, maintaining the temperature of the outlet stream above the dewpoint at all times, or that replacing the type 316 stainless steel with an alloy such as Incoloy 800 that is more resistant to chloride attack. Ammonia Chemical processing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0060144
EISBN: 978-1-62708-234-1
... filled with a nickel catalyst. The tubes were centrifugally cast from ASTM A297, grade HK-40 (Fe-25Cr-20Ni-0.40C), heat-resistant alloy. The tube was concluded after metallurgical inspection to have failed from creep rupture (i.e., stress rupture). A project for detecting midwall creep fissuring...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001533
EISBN: 978-1-62708-225-9
... resistance is of interest. The babbit wear resistance was studied in the cast state, after the deformation heat treatment, as well as in the plasma-sprayed form both at dry friction sliding and using a lubricant (turbine oil). Table 1 presents the results of wear intensity estimation. The analysis...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001776
EISBN: 978-1-62708-241-9
... white cast iron, martensitic cast iron, and austenitic manganese steel are all abrasion-resistant materials, martensitic cast irons may wear more slowly than the other materials under heavy blows or high compressive and structural stresses of crusher jaws. However, crusher jaws produced from these irons...
Image
Published: 01 June 2019
Fig. 1 Reformer-furnace cell from which cast tubes of ASTM A 297, HK-40, heat-resistant alloy were radiographically inspected for the detection of creep fissuring. (a) Schematic of furnace cell showing positions of radiographic sources and films. Dimensions given in inches. (b) Radiograph More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
..., such as magnesium or zinc, may be introduced into the galvanic assembly. The most active member will corrode while providing cathodic protection to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection...