Skip Nav Destination
Close Modal
By
Cássio Barbosa, Jôneo Lopes do Nascimento, José Luiz Fernandes, Ibrahim de Cerqueira Abud
Search Results for
hardness limits
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 341 Search Results for
hardness limits
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047121
EISBN: 978-1-62708-218-1
... composition and hardness, both of which were found to be within prescribed limits. This evidence supports the conclusions that the failure was caused by fatigue cracks that initiated in an area having an excessive amount of inclusions. The inclusions were located in a transition zone, which is a region...
Abstract
A 1050 steel crankshaft with 6.4 cm (2.5 in.) diam journals that measured 87 cm (34.25 in.) in length and weighed 31 kg (69 lb) fractured in service. The shaft had been quenched and tempered to a hardness of 19 to 26 HRC, then selectively hardened on the journals to a surface hardness of 40 to 46 HRC. Visual inspection and 100x micrographs showed the fracture surface as having a complex type of fatigue failure initiated from subsurface inclusions in the transition zone between the induction-hardened surface and the softer core. The fractured shaft was examined for chemical composition and hardness, both of which were found to be within prescribed limits. This evidence supports the conclusions that the failure was caused by fatigue cracks that initiated in an area having an excessive amount of inclusions. The inclusions were located in a transition zone, which is a region of high stress. No recommendations were made.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
... a variety of steels and followed their performance over a period of time. The steels tested included plain carbon and low-alloy steels, and the hardness of each hammer complied with the hardness limits required by BS 876 (520 to 640 HV; 50.5 to 57.5 HRC). Although this type of testing yields useful...
Abstract
This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling. The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0048592
EISBN: 978-1-62708-218-1
..., 0.01% Ni, and 0.16% Cr, which is a modified 1035 steel. The screw material had a tensile strength of 855 MPa (124 ksi), a yield strength of 634 MPa (92 ksi), and an approximate endurance limit (smooth specimen) of 427 MPa (62 ksi) at a hardness of 36 HRC. Microscopic examination of a longitudinal...
Abstract
A drive-line assembly failed during vehicle testing. The vehicle had traveled 9022 km (5606 mi) before the failure occurred. Both the intact and fractured parts of the assembly were analyzed to determine the cause and sequence of failure. Visual examination of the assembly showed three of four bearing caps, two cap screws, and one universal-joint spider had fractured. Examination of the three fractured bearing caps and the spider showed no evidence of fatigue but showed that fracture occurred in a brittle manner. The bearing cap that was not destroyed still contained portions of the two fractured cap screws. It was found that the two cap screws failed in fatigue under service stresses. The three bearing caps and the universal-joint spider broke in a brittle manner. The properties of the material in the cap screws did not fulfill the specifications. The modified 1035 steel was of insufficient alloy content. Also, the tensile strength and endurance limit were lower than specified and were inadequate for the application. The material for the cap screw was changed from modified 1035 steel to 5140 steel.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
.... The general macroscopic overview of the fracture surface on this pump axis is shown in Fig. 8 . The arrow indicates the site where crack begins, and from this region radial marks diverge. The average hardness value (HRC 22.4) is lower then the upper limit (HRC 25) prescribed by the NACE/ISO standard...
Abstract
The shafts on two centrifugal pumps failed during use in a petroleum refinery. Light optical microscopy and scanning electron microscopy were used to analyze the damaged materials to determine the cause of failure. The results showed that one shaft, made of duplex stainless steel, failed by fatigue fracture, and the other, made of 316 austenitic stainless steel, experienced a similar fracture, which was promoted by the presence of nonmetallic inclusion particles.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... Abstract Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089534
EISBN: 978-1-62708-223-5
... be expected in a cast steel. The hardness range of the core conforms to data in end-quench hardenability curves for 3310 steel. It represents, in fact, essentially the maximum hardness values attainable and, as such, indicates that tempering was probably limited to about 150 °C (300 °F). In view...
Abstract
The specially designed sand-cast low-alloy steel jaws that were implemented to stretch the wire used in prestressed concrete beams fractured. The fractures were found to be macroscale brittle and exhibited very little evidence of deformation. The surface of the jaws was disclosed by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about 150 deg C by the hardness values (close to the maximum hardness values attainable) for the core. It was interpreted that the low tempering temperature used may have contributed to the brittleness. The procedures used for casting the jaws were recommended to be revised to eliminate the internal shrinkage porosity. Tempering at a slightly higher temperature to reduce surface and core hardness was recommended.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048253
EISBN: 978-1-62708-234-1
.... It was found that gear 1 had a lower hardness than specified while the case hardness of gear 2 was found to be within limits. Both the pitting and the wear pattern were revealed to be more severe on gear 1 than on gear 2. Surface-contact fatigue (pitting) of gear 1 (cause of lower carbon content...
Abstract
Two intermediate impeller drive gears (made of AMS 6263 steel, gas carburized, hardened, and tempered) exhibited evidence of pitting and abnormal wear after production tests in test-stand engines. The gears were examined for hardness, case depth, and microstructure of case and core. It was found that gear 1 had a lower hardness than specified while the case hardness of gear 2 was found to be within limits. Both the pitting and the wear pattern were revealed to be more severe on gear 1 than on gear 2. Surface-contact fatigue (pitting) of gear 1 (cause of lower carbon content of the carburized case and hence lower hardness) was found to be the reason for failure. It was recommended that the depth of the carburized case on impeller drive gears be increased from 0.4 to 0.6 mm to 0.6 to 0.9 mm to improve load-carrying potential and wear resistance. A minimum case-hardness requirement was set at 81 HRA.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001828
EISBN: 978-1-62708-241-9
... in SCF. For ferrous metals, the carbon content and the hardness of the component are also critical factors that need to be closely controlled, and accurate measurements are required to assure that these factors are within the designed limits. Control of these parameters is especially important...
Abstract
A heat transport pump in a heavy water reactor failed (exhibiting excessive vibration) during a restart following a brief interruption in coolant flow due to a faulty valve. The pump had developed a large crack across the entire length of a bearing journal. An investigation to establish the root cause of the failure included chemical and metallurgical analysis, scanning electron fractography, mechanical property testing, finite element analysis of the shrink fitted journal, and a design review of the assembly fits. The journal failure was attributed to corrosion fatigue. Corrective actions to make the journals less susceptible to future failures were implemented and the process by which they were developed is described.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001722
EISBN: 978-1-62708-236-5
... on chromium-plating. Such components should be heat-treated at 190–210° C. (375–410° F.) for not less than two hours, but it should be appreciated that this heat treatment further and markedly reduces the fatigue limit of the plated component. Hard chromium is rarely free from microscopic cracks; it should...
Abstract
The crankshaft of a 37.5-hp, 3-cylinder oil engine was examined. The engine had been dismantled for the purpose of a general overhaul and in the course of this work the crankpins were chromium-plated before regrinding. The engine was returned to service and after running for 290 h the crankshaft broke at the junction of the No. 3 crankpin and the crankweb nearest to the flywheel. A typical fatigue crack had originated at a number of points in the root of the fillet to the web. In its early stages it ran slightly into the web but turned back to the pin when it encountered the oil hole. The shaft had been made from a heat-treated alloy steel. The thickness of the plating was approximately 0.025 in. and numerous cracks were visible in it, several of which had given rise to cracks in the steel below. The primary cause of the crankshaft failure was the plating of the crankpins. The presence of the grooves alone would result in considerable intensification of stress in zones which are normally highly stressed, while the crazy cracking introduced a multiplicity of stress-raisers of a type almost ideal from the point of view of initiating fatigue cracks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001670
EISBN: 978-1-62708-217-4
... or not they are significant. X-ray Based on the results from the hardness and microstructure investigation and the content of Reference 4 , it was felt that the inner wall softening was definitely due to a thermal affect. Due to the time limitations it was only possible to conduct a limited X-ray analysis...
Abstract
Failure occurred in two TOW flight missile cases in unrelated launchings. After an extensive investigation, it was concluded that stress corrosion was the most likely cause of failure. Subsequent to this conclusion, inner wall softening was observed in an unfired TOW flight missile case. Questions arose as to how the softening occurred and whether or not it had contributed to the failures. This report contains the results of a study which resolved that inner wall softening could not have been present in the failed missile cases.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001761
EISBN: 978-1-62708-241-9
... material, in general, is within the range of the technical demand and no obvious forging or machining defects were found for all examined crankshafts. However, both the surface hardness and the general depth of the nitrided layer of the machined crankshafts were below the acceptable limits set...
Abstract
An investigation of a damaged crankshaft from a horizontal, six-cylinder, in-line diesel engine of a public bus was conducted after several failure cases were reported by the bus company. All crankshafts were made from forged and nitrided steel. Each crankshaft was sent for grinding, after a life of approximately 300,000 km of service, as requested by the engine manufacturer. After grinding and assembling in the engine, some crankshafts lasted barely 15,000 km before serious fractures took place. Few other crankshafts demonstrated higher lives. Several vital components were damaged as a result of crankshaft failures. It was then decided to send the crankshafts for laboratory investigation to determine the cause of failure. The depth of the nitrided layer near fracture locations in the crankshaft, particularly at the fillet region where cracks were initiated, was determined by scanning electron microscope (SEM) equipped with electron-dispersive X-ray analysis (EDAX). Microhardness gradient through the nitrided layer close to fracture, surface hardness, and macrohardness at the journals were all measured. Fractographic analysis indicated that fatigue was the dominant mechanism of failure of the crankshaft. The partial absence of the nitrided layer in the fillet region, due to over-grinding, caused a decrease in the fatigue strength which, in turn, led to crack initiation and propagation, and eventually premature fracture. Signs of crankshaft misalignment during installation were also suspected as a possible cause of failure. In order to prevent fillet fatigue failure, final grinding should be done carefully and the grinding amount must be controlled to avoid substantial removal of the nitrided layer. Crankshaft alignment during assembly and proper bearing selection should be done carefully.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001786
EISBN: 978-1-62708-241-9
... surface Fig. 2 Broken pieces of the spline shaft Fig. 3 CAD model of main spindle with chuck Fig. 10 Microcrack originating from the circlip groove corner Fig. 11 Hardness profile across circlip groove Fig. 12 Hardness profile across external spline...
Abstract
A heavy duty facing lathe failed when the tool post caught one of the jaws on the rotating chuck, causing the spline shaft that drives the main spindle to fracture. A detailed analysis of the fracture surfaces (including fractography, metallography, and analytical stress calculations) revealed areas of damage due to rubbing with evidence of cleavage fracture on the unaffected surfaces. The results of stress analysis indicated that repeated reversals of the spindle produced stresses exceeding the fatigue limit of the shaft material. These stresses led to the formation of microcracks in a retaining ring groove that were accelerated to sudden failure when the tool post and chuck collided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001212
EISBN: 978-1-62708-235-8
... of 10 kgf. Values HV10 of 630 kgf/mm 2 and 214 kgf/mm 2 were obtained at the nose and the original material, respectively. The hardness of the nose reaches the upper limit of the hardness obtainable by hardening C45 while the hardness of the material in the original state corresponds to a normalized...
Abstract
Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded that the numerous hardening cracks were caused by abrupt quenching from over-heating temperature and by local stress concentrations due to indentations of the tool caused during alignment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089696
EISBN: 978-1-62708-220-4
... (~214 HB). Estimated tensile strength was 710 MPa (103 ksi). The weld metal had readings of 353, 355, and 358 HV, foran average hardness of 355 HV (~336 HB). The upper limit of tensile strength was 1110 MPa (161 ksi). Conclusion The crosshead casting developed cracks at the sharp corners...
Abstract
A failed crosshead of an industrial compressor was examined using optical and SEM. The crosshead was an ASTM A148 grade 105-85 steel casting. On the basis of the observations reported and available background information, it was concluded that the failure began with the initiation of cracks at slag inclusions and sharp fillets in weld-repair areas in the casting. The weld-repair procedures were unsatisfactory. The cracks propagated in a fatigue mode. he casting quality was judged unacceptable because of the presence of excessive shrinkage porosity. It was recommended that crosshead castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047823
EISBN: 978-1-62708-236-5
.... The shaft surface both near and in the keyways indicated fretting which greatly reduced the fatigue limit of the shaft metal and initiated fatigue cracks. Fatigue marks were observed on the fractured key. Repetitive impact loading was responsible for propagation of the cracks. The high cyclic bending...
Abstract
High-horsepower electric motors were utilized to drive large compressors (made of 4340 steel shafts and gear-type couplings) required in a manufacturing process. The load was transmitted by two keys 180 deg apart. Six of the eight compressor shafts were found cracked in a keyway and one of them fractured after a few months of operation. Visual examination of fractured shaft revealed that the cracks originated from one of the keyways and propagated circumferentially around the shaft. The shaft and coupling slippage was indicated by the upset keys and this type of fracture. The shaft surface both near and in the keyways indicated fretting which greatly reduced the fatigue limit of the shaft metal and initiated fatigue cracks. Fatigue marks were observed on the fractured key. Repetitive impact loading was responsible for propagation of the cracks. The high cyclic bending stresses were caused by misalignment between the electric motor and compressor and were transmitted to the shaft through the geared coupling. Flexible-disk couplings capable of transmitting the required horsepower were installed on the shafts as a corrective measure.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
... that in steels, endurance limit is directly related to hardness values obtained after quenching and tempering. As is noted in Fig. 8 , for grade AISI 4340, the optimum fatigue resistance would be reached at about 45 HRC [ 6 ]. Examination of the available fracture surfaces was performed at macro scale...
Abstract
The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used in the design calculations, thus causing the initiation of the cracking. Moreover, although the shaft had been quenched and tempered, its actual hardness did not have the optimal value for long-term fatigue strength.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
... showing the geometry and thickness of the hardened case. Note the irregular case depth. Nital etchant, 1.86× Fig. 11 Gear core microstructure consisting of tempered martensite with an average hardness of 24 HRC. Nital etchant. (a)154×. (b)616× Fig. 12 Microstructure of the case...
Abstract
A bull gear from a coal pulverizer at a utility failed by rolling-contact fatigue as the result of continual overloading of the gear and a nonuniform, case-hardened surface of the gear teeth. The gear consisted of an AISI 4140 Cr-Mo steel gear ring that was shrunk fit and pinned onto a cast iron hub. The wear and pitting pattern in the addendum area of the gear teeth indicated that either the gear or pinion was out of alignment. Beach marks observed on the fractured surface of the gear indicated that fatigue was the cause of the gear failure. Similar gears should be inspected carefully for signs of cracking or misalignment. Ultrasonic testing is recommended for detection of subsurface cracks, while magnetic particle testing will detect surface cracking. Visual inspection can be used to determine the teeth contact pattern.
1