Skip Nav Destination
Close Modal
Search Results for
hardness evaluation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 286 Search Results for
hardness evaluation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001135
EISBN: 978-1-62708-219-8
... the microstructure, chemistry and hardness of the steel and measuring the dynamic toughness and fatigue crack growth rates in the banded region. By noting these differences, bridge engineers can re-evaluate existing designs and modify current bridge inspection procedures. The steel used in the construction...
Abstract
In 1979, during a routine bridge inspection, a fatigue crack was discovered in the top flange plate of one tie girder in a tied arch bridge crossing the Mississippi River. Metallographic analysis indicated a banding or segregation problem in the middle of the plate, where the carbon content was twice what it should have been. Based on this and results of ultrasonic testing, which revealed that the banding occurred in 24-ft lengths, it was decided to close the bridge and replace the defective steel. The steel used in the construction of this bridge was specified as ASTM A441, commonly used in structural applications. Testing showed an increase in hardness and weight percent carbon and manganese in the banded region. Further testing revealed that the area containing the segregation and coarse grain structure had a lower than expected toughness and a transition temperature 90 deg F higher than specified by the ASTM standards. The fatigue crack growth rate through this area was much faster than expected. All of these property changes resulted from increased carbon levels, higher yield strength, and larger than normal grain size.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001507
EISBN: 978-1-62708-217-4
...). The hardness dropped to a uniform reading of 30–32 HRC immediately upon transitioning into the normal, darker etched zone of the base material. Hardness evaluation of a sample taken from the shank, in an area remote from the failure origin, gave uniform results with an average value of 31 HRC. The observed...
Abstract
A large four-engine aircraft was on a cargo flight at night when a loud bang was heard, accompanied by a loss of power from both engines on the left side. After an emergency landing, it was discovered that the propellers from both left side engines were missing. The initial investigation determined that the four-bladed propeller from the left inboard engine had separated in flight, subsequently impacting the left outboard engine, causing its propeller to separate also. Three years later, the left inboard propeller hub was recovered. All four blades had separated through the shank area adjacent to the hub. Detailed SEM examination confirmed a fatigue mode of failure in this area with a primary single origin on the inside surface of the shank. The main fatigue origin site was coincident with one of the defects on the inner surface of the blade shank. The most probable source for creating the defects on the ID bore of the shank was the blade tip chrome plating process, which was carried out during the last overhaul prior to the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006900
EISBN: 978-1-62708-225-9
... and to evaluate the effect of annealing and the hydrogen-stress cracking behavior of type 316 stainless steel. Half-hard type 301, annealed type 301, and annealed type 316 stainless steel clamp ends were placed in 0.1 N sodium chloride (NaCl) solution with or without MoS 2 treatment. Half of each specimen type...
Abstract
Several type 301 half-hard stainless steel clamps used to hold cylindrical galvanized steel covers to galvanized cast iron bases failed in flooded manholes after one to six months of service. Before service, they were treated with antiseize compound containing MoS2. Based on the conditions (the clamp is the cathode of a galvanic cell with zinc) and the brittle nature of the cracks, the failures were diagnosed as hydrogen-stress cracking. Laboratory experiments were conducted to substantiate the above diagnosis and to evaluate the effect of annealing and the hydrogen-stress cracking behavior of type 316 stainless steel. The problem was solved by changing the clamp material from type 301 to type 316 stainless steel and by eliminating the MoS2 antiseize compound.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... but is generally used as a pass/fail evaluation Hardness testing Macroindentation hardness testing Rockwell hardness Hardness Need smooth surface finish, flat surface, and parallel sides Sample must fit within the machine and be balanced on the pedestal Brinell hardness Hardness Need smooth...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001332
EISBN: 978-1-62708-215-0
... Evaluation The flange was ultrasonically tested from the outside diameter. The indications were rather puzzling, because the reflections were consistently from a cylindrical surface about 95 mm (3.75 in.) from the OD. Dry magnetic particle examination confirmed that the cracks extended more or less...
Abstract
A cracked 356 mm (14 in.) diam slip-on flange (Ni-Cr-Mo-V steel) was submitted for failure analysis. Reported results and observations indicated that the flange was not an integral forging or a casting, as specified. It had been fabricated by welding and machining a ring insert within a flange with a larger internal diameter. The flange cracked because the welds between the flange and the insert were inadequate to withstand the bolting pressures. A warning was issued to end users of the flanges, which are being inspected nondestructively for conformance to specifications.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001698
EISBN: 978-1-62708-222-8
... evaluation of a cross section of a copper pipe revealed extensive pitting corrosion throughout the inner diametral surfaces of the pipe. Some pits had penetrated through the wall thickness, causing the pin hole leaks. Analysis of a sample of water obtained from the subdivision revealed relatively high...
Abstract
A residential subdivision near Tampa, FL was constructed in 1984 through 1985. Several sections of copper pipe were removed from one residence that had reported severe leaking. Visual examination revealed extensive pitting corrosion throughout the ID surfaces of the sample. Microscopic evaluation of a cross section of a copper pipe revealed extensive pitting corrosion throughout the inner diametral surfaces of the pipe. Some pits had penetrated through the wall thickness, causing the pin hole leaks. Analysis of a sample of water obtained from the subdivision revealed relatively high hardness levels (210 mg/l), high levels of sulfate ions (55 mg/l), a pH of 7.6 and a sulfate-to-chloride ratio of 3:1. Analysis of corrosion product removed from the ID surfaces of the pipe section revealed that an environment rich in carbonates existed inside the pipe, a result of the hard water supply. It was concluded that pitting corrosion was a result of the corrosive waters supplied by the local water utility. Waters could be rendered non-pitting by increasing their pH to 8 or higher and neutralizing the free carbon dioxide.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... evaluation revealed a D I of 45.7 mm (1.8 in.) due to the presence of trace elements. The typical D I of Grade 1045 steel is 22.9 mm (0.9 in.). A high carbon content (0.52%) was also identified, further contributing to high core hardness. Hardenability evaluation and tempering curve inspection revealed...
Abstract
Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills of the metallurgical failure analyst. The empirical information supplied by hardenability analysis can provide additional processing and service insight to the investigator. The intent of this paper is to describe some applications of steel thermal response concepts in failure analysis, and several case studies are included to illustrate these applications.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001120
EISBN: 978-1-62708-214-3
... for verification of the chemical composition, measurement of hardness, and analysis of the heat-treated microstructure and surface conditions. Testing Procedure and Results Surface Examination The segment was examined visually and with a stereoscopic microscope at magnifications up to 45× to evaluate...
Abstract
A segment from a premium-quality H13 tool steel die for die casting of aluminum failed after only 700 shots. The segment was subjected to visual, macroscopic, hardness, and metallographic testing. The investigation revealed that failure occurred as a result of fatigue at an electrical-discharge-machined surface where the resulting rehardened layer had not been removed. This rehardened layer had cracked, providing a source for fatigue initiation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001575
EISBN: 978-1-62708-217-4
... teeth in the undamaged area (groove - flanks) and to evaluate hardness drop due to overheating (fillet radius and shaft). As visible in Figure 4 , in the most thermally affected zones (shaft and fillet radius), a drop of about 250 HV at 0.1mm from surface was detected. In the unaffected areas...
Abstract
An oil scavenge pump was found to have failed when a protective shear neck fractured during the start of a jet engine. Visual inspection revealed that the driven gear in one of the bearing compartments was frozen as was the corresponding drive gear. Spacer wear and thermal discoloration (particularly on the driven gear) were also observed. The gears were made from 32Cr-Mo-V13 steel, hardened and nitrided to 750 to 950 HV. Micrographic inspection of the gear teeth revealed microstructural changes that, in context, appear to be the result of friction heating. The spacers consist of Cu alloy (AMS4845) bushings force fit into AA2024-T3 Al alloy spacing elements. It was found that uncontrolled fit interference between the two components had led to Cu alloy overstress. Thermal cycling under operating conditions yielded the material. The dilation was directed inward to the shaft, however, because the bushing had only a few microns of clearance. The effect caused the oil to squeeze out, resulting in metal-to-metal contact, and ultimately failure.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001790
EISBN: 978-1-62708-241-9
... of the shaft, a series of hardness evaluations was conducted. Rockwell “C” Scale (HRC) measurements made along the surface of the shaft away from the chrome-plated bearing journal showed that the average hardness was 37 HRC. Measurement made on a mid-thickness cross section removed from the shaft also yielded...
Abstract
The failure of a high-speed pinion shaft from a marine diesel engine was investigated. The shaft, which had been in service for more than 30 years, failed shortly after the bearings were replaced. Examination of the shaft revealed cyclic fatigue, with a substantial distribution of nonmetallic inclusions near the fracture initiation site. Fracture mechanics analysis indicated that, if stresses acting on the shaft were induced only by normal service loads, there was little likelihood that the inclusions served as failure initiation sites. Further examination of the bearing elements revealed an abnormal wear pattern, consistent with the application of elevated bending loads. The root cause of failure was determined to be an increase in service stresses after bearing replacement along with the presence of nonmetallic inclusions in the shaft.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001649
EISBN: 978-1-62708-234-1
... equipment on an approximately 20-year-old business jet airliner. The aircraft had been brought in for service, and the standard wing de-mating process was initiated to evaluate the extent of corrosion to the airframe. For reasons that were not clear at the time of the investigation, the complete service...
Abstract
Two titanium alloy wing attachment bolts from a commercial jetliner failed during the course of a routine service operation. Failure of the bolts occurred during the re-torque process as the wing was being reattached. Metallurgical failure analysis indicated that the fracture mechanism was ductile overload and that the mechanical properties of the bolts were consistent with exemplar bolts that had been supplied. After eliminating other sources of excessive load application, the most probable cause of failure was ascribed to variances between the frictional characteristics of the bolt at the time of re-torque and at the time of initial torque application several years earlier.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001362
EISBN: 978-1-62708-215-0
... that the potential for water carryover or feedwater induction into the turbine be addressed via an engineering evaluation of the plant's water treatment procedures, steam separation equipment, and start-up procedures. Chlorides Feedwater Turbine blades Water chemistry ASTM A470 grade 4 UNS K22878 Pitting...
Abstract
Numerous cracks observed on the surface of a forged A470 Class 4 alloy steel steam turbine rotor disc from an air compressor in a nitric acid plant were found to be the result of caustic induced stress-corrosion cracking (SCC). No material defects or anomalies were observed in the disc sample that could have contributed to crack initiation or propagation or secondary crack propagation. Chlorides detected in the fracture surface deposits were likely the primary cause for the pitting observed on the disc surfaces and within the turbine blade attachment area. It was recommended that the potential for water carryover or feedwater induction into the turbine be addressed via an engineering evaluation of the plant's water treatment procedures, steam separation equipment, and start-up procedures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0089567
EISBN: 978-1-62708-230-3
... and/or material quality from service. Casting defects Cold shuts Dryer heads Paper machines Stress concentration Gray iron Casting-related failures A paper-drier head manufactured from gray cast iron was removed from service as a result of nondestructive evaluation (NDE) detection of cracklike...
Abstract
A paper drier head manufactured from gray cast iron was removed from service as a result of NDE detection of crack-like surface discontinuities. This component was subjected to internal steam pressure to provide heat energy for drying. Investigation (visual inspection, chemical analysis, mechanical testing, as-polished 54x magnification, etched with nital 33x/54x/215x/230x magnification) supported the conclusions that the NDE indications were the consequence of a cold-shut condition in the casting. The cold shut served as a stress-concentration site and was therefore a potential source of crack initiation. The combination of low material strength and a casting defect was a potential source of unexpected fracture during service, because the component was under pressure from steam. Recommendations included removing other dryer heads exhibiting similar discontinuities and/or material quality from service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
... similar to ASTM A395. Visual examination of the rotor revealed unusually heavy oxidation and thermal fatigue cracking along the edge of the gas passage. Material properties, including microstructure, composition, and hardness, of both the rotor and housing were evaluated to determine the cause of failure...
Abstract
An experimental high-temperature rotary valve was found stuck due to growth and distortion after approximately 100 h. Gas temperatures were suspected to have been high due to overfueled conditions. Both the rotor and housing in which it was stuck were annealed ferritic ductile iron similar to ASTM A395. Visual examination of the rotor revealed unusually heavy oxidation and thermal fatigue cracking along the edge of the gas passage. Material properties, including microstructure, composition, and hardness, of both the rotor and housing were evaluated to determine the cause of failure. The microstructure of the rotor was examined in three regions. The shaft material, the heavy section next to the gas passage and the thin edge of the rotor adjacent to the gas passage. The excessive gas temperatures were responsible for the expansion and distortion that prevented rotation of the rotor. Actual operating temperatures exceeded those intended for this application. The presence of transformation products in the brake-rotor edge indicated that the lower critical temperature had been exceeded during operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001500
EISBN: 978-1-62708-221-1
... Abstract A ‘worn-out’ spiral bevel gear and pinion set was submitted for examination and evaluation. This was a spiral bevel drive set with the gear attached to a differential. The assembled unit was driving a new, large, experimental farm tractor in normal plowing and tilling operations...
Abstract
A ‘worn-out’ spiral bevel gear and pinion set was submitted for examination and evaluation. This was a spiral bevel drive set with the gear attached to a differential. The assembled unit was driving a new, large, experimental farm tractor in normal plowing and tilling operations. The primary failure was associated with the 4820H NiMo alloy steel pinion, and thus the gear was not examined. The mode of failure was rolling contact fatigue, and the cause of failure improper engineering design. The pattern of continual overload was restricted to a specific concentrated area situated diagonally across the profile of the loaded side, which was consistent on every tooth.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001083
EISBN: 978-1-62708-214-3
... to prevent future failures were recommended: changing the impeller composition to a cast stainless steel, or implementing stricter nondestructive evaluation requirements for copper alloy castings. Boilers Sulfide attack C83600 UNS C83600 Intergranular corrosion Casting-related failures...
Abstract
Copper alloy (C83600) impellers from two different feed pumps that supplied water to a 2-year-old boiler failed repeatedly. Examination by various methods indicated that the failures were caused by sulfide attack that concentrated in shrinkage voids in the castings. Two alternatives to prevent future failures were recommended: changing the impeller composition to a cast stainless steel, or implementing stricter nondestructive evaluation requirements for copper alloy castings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001718
EISBN: 978-1-62708-220-4
... Abstract Post-service destructive evaluation was performed on two commercially pure zirconium pump impellers. One impeller failed after short service in an aqueous hydrochloric acid environment. Its exposed surfaces are bright and shiny, covered with pockmarks, and peppered with pitting...
Abstract
Post-service destructive evaluation was performed on two commercially pure zirconium pump impellers. One impeller failed after short service in an aqueous hydrochloric acid environment. Its exposed surfaces are bright and shiny, covered with pockmarks, and peppered with pitting. Uniform corrosion is evident and two deep linear defects are present on impeller blade tips. In contrast, the undamaged impeller surfaces are covered with a dark oxide film. This and many other impellers in seemingly identical service conditions survive long lives with little or no apparent damage. No material or manufacturing defects were found to explain the different service performance of the two impellers. Microstructure, microhardness and material chemistry are consistent with the specified material. Examination reveals the damage mechanism to be corrosion-enhanced cavitation erosion, the most severe form of erosion corrosion. Cavitation damage to the protective oxide film caused the zirconium to lose its normally outstanding corrosion resistance. The root cause of the impeller failure is most likely the introduction of excessive air into the pump due to low liquid level, a bad seal or inadequate head. Corrosion pitting, crevice corrosion, and solidification cracks (casting defect) also contributed to the failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0045992
EISBN: 978-1-62708-225-9
... was specified to be case hardened to 55 to 60 HRC, with a case depth of 0.6 to 0.9 mm (0.025 to 0.035 in.); the hardness of the mating valve seat was 40 HRC. Analysis showed that the fracture occurred through two 8 mm (0.313 in.) diam holes at the narrowest section of the poppet. The valve continued to operate...
Abstract
After two weeks of operation, a poppet used in a check valve to control fluid flow and with a maximum operating pressure of 24 MPa (3.5 ksi) failed during operation. Specifications required that the part be made of 1213 or 1215 rephosphorized and resulfurized steel. The poppet was specified to be case hardened to 55 to 60 HRC, with a case depth of 0.6 to 0.9 mm (0.025 to 0.035 in.); the hardness of the mating valve seat was 40 HRC. Analysis showed that the fracture occurred through two 8 mm (0.313 in.) diam holes at the narrowest section of the poppet. The valve continued to operate after it broke, which resulted in extensive loss of metal between the holes. 80x micrograph and 4x macrograph of a 5% nital etched longitudinal section, and chemical analyses showed the poppet did fit 1213 or 1215 specs. However, hardness measurements showed surface hardness was excessive-61 to 65 HRC instead of the specified 55 to 60 HRC. Thus, the poppet failed by brittle fracture, and cracking occurred across nonmetallic inclusions. Recommendation was to redesign the valve with the poppet material changed to 4140 steel, hardened, and tempered to 50 to 55 HRC.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.