1-20 of 553 Search Results for

hardening

Sort by
Image
Published: 30 August 2021
Fig. 21 Illustration of (a) isotropic hardening, (b) kinematic hardening, (c) mixed hardening, and (d) resulting stress-strain curves under reverse yielding. Adapted from Ref 71 More
Image
Published: 01 January 2002
Fig. 1 This die of manganese oil-hardening steel cracked (highlighted by magnetic powder) at the sharp change of section in quenching. A fillet or even an undercut could have eliminated the failure. Differential hardening which leaves the fillet soft can also help as can the use of an air More
Image
Published: 01 January 2002
Fig. 3 Faint cracks in 102 by 95 mm (4 by 3.75 in.) die of manganese oil-hardening steel are exaggerated by magnetic powder. During quenching, excessive stresses were set up between the body and the small protruding section and caused failure. Poor machining of the 13 mm (0.5 in.) radius More
Image
Published: 01 January 2002
Fig. 4 A properly heat treated tool of manganese oil-hardening steel has a martensitic structure (left) containing fine tempered martensite and carbides. An overheated tool material has an acicular martensitic structure (right) that cracks easily (see Fig. 5 ). Etchant, Nital; 700X. More
Image
Published: 01 January 2002
Fig. 5 Quenching from too high a temperature cracked this manganese oil-hardening steel die ( Fig. 4 pictures its microstructure). Some of the cracks which are exaggerated by magnetic powder probably are secondary and developed because the structure is particularly sensitive to grinding. More
Image
Published: 01 January 2002
Fig. 43 Die failure caused by severe wear. (a) Die made from air-hardening tool steel that exhibited a crazed and eroded condition. Areas A and B are shown in (b) and (c), respectively. Both 10×. (d) Microstructural examination of area B revealing a layer of as-quenched martensite More
Image
Published: 01 January 2002
Fig. 75 Geometric models of carbides formed during case hardening. (a) Massive carbide grain, 4000×. (b) Film carbide, 2000×. (c) Intergranular carbide, 4000×. Source: Ref 30 More
Image
Published: 01 January 2002
Fig. 92 Effect of hardening by plastic deformation. (a) Case-hardened surface. (b) Non-case-hardened surface. Both 243×. Source: Ref 30 More
Image
Published: 30 August 2021
Fig. 3 Problems and remedies in designing parts to avoid cracking during hardening More
Image
Published: 30 August 2021
Fig. 23 (a) Broken tooth in chuck jaw after hardening and nitriding. (b) Micrograph showing initiation of crack in brittle white layer and propagation along nitride formed in austenite grain boundaries. Original magnification: 300× More
Image
Published: 30 August 2021
Fig. 43 Die failure caused by severe wear. (a) Die made from air-hardening tool steel that exhibited a crazed and eroded condition. Areas A and B are shown in (b) and (c), respectively. Original magnification of both: 10×. (d) Microstructural examination of area B revealing a layer More
Image
Published: 01 June 2019
Fig. 8 Edge structure of a file blank, which remained too soft during hardening. Cross section, etched in nital. 100 × More
Image
Published: 01 June 2019
Fig. 5 Local melting and hardening caused by an electrical engraving tool, etched in alcoholic picric acid. 200× More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001595
EISBN: 978-1-62708-235-8
... Abstract Hardenability evaluation is typically applied to heat treatment process control, but can also augment standard metallurgical failure analysis techniques for steel components. A comprehensive understanding of steel hardenability is an essential complement to the skills...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001214
EISBN: 978-1-62708-235-8
... Abstract A case-hardened sleeve made of C 15 (Material No. 1.0401) was flattened at two opposing sides and had cracked open at these places, the crack initiating at a face plane. The wall of the sleeve was 9 mm thick, but the flat ends were machined down to 5.5 mm from the outside. The customer...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001212
EISBN: 978-1-62708-235-8
... Abstract Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
... Abstract Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride...
Image
Published: 01 January 2002
Fig. 17 S-N curves for as-hardened (gear A) and as-hardened plus double shot peened (gear B) gears. Source: Ref 41 More
Image
Published: 15 January 2021
Fig. 13 Comparison of carbon profiles of case-hardened and through-hardened bearing steels More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001230
EISBN: 978-1-62708-236-5
... in comparatively short journal pins at high stresses. This crankshaft fracture was an example of the damage that is caused or promoted neither by material nor heat treatment mistakes nor by defects of design or machining, but solely by overstressing. Crankshafts Induction hardening Torsional fatigue...