Skip Nav Destination
Close Modal
Search Results for
green sand casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-14 of 14 Search Results for
green sand casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... with rough surfaces on the drag surface of the casting (in dispersed areas) Raised sand A 224 (a) Projections with rough surfaces on other parts of the casting Mold drop A 225 (a) Projections with rough surfaces over extensive areas of the casting Corner scab A 226 (a) Projections...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003508
EISBN: 978-1-62708-180-1
... iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds...
Abstract
This article focuses on the general root causes of failure attributed to the casting process, casting material, and design with examples. The casting processes discussed include gravity die casting, pressure die casting, semisolid casting, squeeze casting, and centrifugal casting. Cast iron, gray cast iron, malleable irons, ductile iron, low-alloy steel castings, austenitic steels, corrosion-resistant castings, and cast aluminum alloys are the materials discussed. The article describes the general types of discontinuities or imperfections for traditional casting with sand molds. It presents the international classification of common casting defects in a tabular form.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001109
EISBN: 978-1-62708-214-3
... was chromium rich, whereas the inner portion was rich in iron and nickel. Stainless steel grate bars are sand cast to 25 × 38 × 25 mm (1 × 1.5 × 1 in.), with C-shaped arms at each end to fit into the frame of the grate box bottom ( Fig. 2 ). This steel is an austenitic heat-resistant grade. The bars...
Abstract
Grate bars in the traveling grate indurators in several taconite processing units suffered excessive corrosion following a conversion from acid to fluxed pellet production procedures. The campaign life of the HH grade cast stainless steel bars was reduced from more than 7 years to approximately 9 months. Several corroded grate bars were examined metallographically and by electron microscopy to determine the causes of the accelerated corrosion. Chemical and X-ray diffraction analyses were also conducted, along with simulation tests to assess the role of alkali chlorides in the corrosion process. The basic cause of degradation was found to be hot corrosion caused by the deposition of alkali sulfates and chlorides. However this degradation may have been aggravated by thermal cycling and abrasion. The source of the salt was impurities in the flux. Two potential solutions were proposed: modification of the processing parameters to reduce the salt deposition and / or change of bar materials to a more resistant alloy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... for slurry handling. Figure 2(a) illustrates erosion-corrosion attack on the internal wall of a carbon steel oil-sands tailings pipe. The internal wall suffers from synergistic attack of solid-particle impingement and corrosion from the sand-containing slurry. Figure 2(b) illustrates erosion-corrosion...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001702
EISBN: 978-1-62708-219-8
... concrete cast around rebar; concrete surface sealed with linseed oil; steel rocker assemblies sand blasted and painted. (Note: no details about the mix design of the patch concrete were found). July 1970 - rebar showing on column and rust streaks; small cracks on outside of all beams; transverse...
Abstract
The Rocky Point Viaduct, located near Port Orford, OR, was replaced after only 40 years of service. A beam from the original viaduct was studied in detail to determine the mechanisms contributing to severe corrosion damage to the structure. Results are presented from the delamination survey, potential and corrosion mapping, concrete chemistry, and concrete physical properties. The major cause of corrosion damage appears to have been the presence of both pre-existing and environmentally-delivered chlorides in the concrete.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... of mixed behavior was created based on results (rounded silica sand of 0.1 to 0.3 mm, or 0.004 to 0.01 in., diameter; 61 m/s, or 200 ft/s, velocity) obtained for WC-15wt%Co cemented carbide consisting of brittle tungsten carbide grains and ductile cobalt matrix ( Ref 49 ). Erosion of a given material...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
..., such as magnesium or zinc, may be introduced into the galvanic assembly. The most active member will corrode while providing cathodic protection to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... to the other members in the galvanic assembly (for example, zinc anodes in cast iron waterboxes of copper alloy water-cooled heat exchangers). Cathodic protection is often used for the protection of underground or underwater steel structures. The use of cathodic protection for long-term corrosion...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... in an epoxy mount. Fig. 7 Good edge retention obtained in a cast epoxy mount containing soft ceramic shot filler (round particles in the epoxy at the top.) The specimen is annealed H13 hot work die steel etched with picral. Grinding Grinding should commence with the finest grit size...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
... These are often due to air trapped in the product that cannot escape when the resin cures. Use enough liquid resin Ensure the resin flows evenly between layers Ensure the layers are tight, without gaps between them Apply a vacuum during processing Typical defects of casting products...
Abstract
This article discusses technologies focused on processing plastic materials or producing direct tools used in plastics processing. The article focuses on extrusion and injection molding, covering applications, materials and their properties, equipment, processing details, part design guidelines, and special processes. It also covers the functions of the extruder, webline handling, mixing and compounding operations, and process troubleshooting. Thermoforming and mold design are covered. Various other technologies for polymer processing covered in this article are blow molding, rotational molding, compression molding, transfer molding, hand lay-up process, casting, and additive manufacturing.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... steel piping and further crack penetration into the piping wall. The cracks continued to propagate during service from stresses induced in the piping. In another case, a transfer line carrying 73% sodium hydroxide developed a leak at a weld joining a cast alloy 400 coupling to wrought alloy 400 pipe...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.9781627083959
EISBN: 978-1-62708-395-9