Skip Nav Destination
Close Modal
Search Results for
grain morphology
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 196 Search Results for
grain morphology
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Reactor Cooling Water Expansion Joint Bellows: The Role of the Seam Weld in Fatigue Crack Development
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 6 Grain Morphology of Fusion Zone Indicating Teardrop-Shaped Weld Pool (a) and Schematic of Moving Weld Pool (b) [ 2 ].
More
Image
Published: 01 January 2002
Fig. 2 SEM images of intergranular fracture with different grain morphologies. (a) Rock candy appearance from atmospheric stress-corrosion cracking of a high-strength aluminum alloy with equiaxed grains. 130×. (b) Intergranular fracture along the part line of an aluminum forging
More
Image
Published: 01 December 2019
Image
in Hydrogen-Assisted Fracture of a 17-4PH Airplane Wing Component
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 4 SEM fractographs of flake 1, showing grain-boundary morphology. Higher-magnification view in (b) shows terraces, or ledges.
More
Image
in Metallurgical Evaluation of Prestressed Wire Failures
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Image
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 20 Fracture surface morphologies. (a) Fracture along columnar grains. (b) Fracture along equiaxed grains. (c) Fracture morphology observed with high magnification. (d) Transgranular morphology at high magnification (scanning electron microscopy)
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001602
EISBN: 978-1-62708-229-7
... microstructure and grain morphology play the principal roles in failure initiation and propagation. This is especially true when there is a variation in the microstructure of the bucket material because microstructural variations cause mechanical properties in the bucket alloy to vary with location. Therefore...
Abstract
This article presents a failure analysis of 37.5 mW gas turbine third stage buckets made of Udimet 500 superalloy. The buckets experienced repetitive integral tip shroud fractures assisted by a low temperature (type II) hot corrosion. A detailed analysis was carried out on elements thought to have influenced the failure process: a) the stress increase from the loss of a load bearing cross-sectional area of the bucket tip shroud by the conversion of metal to the corrosion product (scale), b) influence of the tip shroud microstructure (e.g., a presence of equiaxed and columnar grains, their distribution and orientation), c) evidence of the transgranular initiation, and d) intergranular creep mechanism propagation. The most probable cause of the bucket damage was the combination of increased stresses due to corrosion-induced thinning of the tip shroud and unfavorable microstructures in the tip shroud region.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001682
EISBN: 978-1-62708-229-7
... microcracks were caused by liquation in the HAZ of the autogenous GTAW seam weld, and are defined as HAZ liquation cracks [ 1 ]. The grain morphology in the weld fusion zone was typical of a procedure utilizing a “high” welding speed and producing a teardrop-shaped weld pool [ 2 ], Figure 6 . Large grains...
Abstract
The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001801
EISBN: 978-1-62708-241-9
... = 16 ASTM F136 Specification (min) 26 125 115 8 Annealed or cold worked Typical Annealed 35 135 125 30 Annealed Summary of rod observations Table 3 Summary of rod observations Rod “A” Rod “B” Surface morphology Rough Smooth Grain diameter Small (3 μm) Fine...
Abstract
Both rods in a Harrington rod cervical stent failed after a short time in service. Metallurgical analysis revealed a significant number of notches as well as enlarged grain size in one of the two rods, rough shallow-cracked surfaces along the bend profiles, possible signs of corrosion, and fractures (on both rods) near indentations imparted by retaining clamps. The observations suggest that surface roughness and bending defects initiated cracking that led to the fatigue failure of the compromised rod, followed some time later by the overload fracture of the second rod.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001717
EISBN: 978-1-62708-217-4
..., while the other was labeled secondary). These two crack fronts initially propagated on different planes, and converged during fast fracture in the location shown in Figure 2 . The size of the grains within these intergranular regions was so large, that the resultant “rock candy” morphology was observed...
Abstract
The US Army Research Laboratory performed a failure investigation on a broken main landing gear mount from an AH-64 Apache attack helicopter. A component had failed in flight, and initially prevented the helicopter from safely landing. In order to avoid a catastrophe, the pilot had to perform a low hover maneuver to the maintenance facility, where ground crews assembled concrete blocks at the appropriate height to allow the aircraft to safely touch down. The failed part was fabricated from maraging 300 grade steel (2,068 MPa [300 ksi] ultimate tensile strength), and was subjected to visual inspection/light optical microscopy, metallography, electron microscopy, energy dispersive spectroscopy, chemical analysis, and mechanical testing. It was observed that the vacuum cadmium coating adjacent to the fracture plane had worn off and corroded in service, thus allowing pitting corrosion to occur. The failure was hydrogen-assisted and was attributed to stress corrosion cracking (SCC) and/or corrosion fatigue (CF). Contributing to the failure was the fact that the material grain size was approximately double the required size, most likely caused from higher than nominal temperatures during thermal treatment. These large grains offered less resistance to fatigue and SCC. In addition, evidence of titanium-carbo-nitrides was detected at the grain boundaries of this material that was prohibited according to the governing specification. This phase is formed at higher thermal treatment temperatures (consistent with the large grains) and tends to embrittle the alloy. It is possible that this phase may have contributed to the intergranular attack. Recommendations were offered with respect to the use of a dry film lubricant over the cadmium coated region, and the possibility of choosing an alternative material with a lower notch sensitivity. In addition, the temperature at which this alloy is treated must be monitored to prevent coarse grain growth. As a result of this investigation and in an effort to eliminate future failures, ARL assisted in developing a cadmium brush plating procedure, and qualified two Army maintenance facilities for field repair of these components.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001800
EISBN: 978-1-62708-241-9
... fracture surface outside of the origin thumbnail, exhibiting a mottled or feathery morphology Fig. 9 Typical transverse microstructure of a patented music wire, exhibiting folded and deformed ferrite grains (white) and pearlite colonies (dark), Nital etch Fig. 10 SEM image of typical...
Abstract
An electric transport vehicle, similar to an electric trolley or subway rail car, experienced frequent breakdowns due to in-service fractures of torsion springs that support the weight of an overhead electric pickup assembly. Scanning electron microscopy and metallographic examinations determined that the fractures stemmed from electric arc damage. Intergranular quench cracks in the transformed untempered martensite on the surface of the spring provided crack initiations that propagated during operation causing fatigue fracture.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001128
EISBN: 978-1-62708-214-3
... level in the base metal, compared with that found in the weld metal, appeared to be in agreement with the larger grain size in the base metal ( Fig. 6 ). Fig. 8 Hardness profile of fusion line area. Conclusion The fracture morphologies of laboratory-tested creep crack growth...
Abstract
Creep crack growth and fracture toughness tests were performed using test material machined from a seam welded ASTM A-155-66 class 1 (2.25Cr-1Mo) steel steam pipe that had been in service for 15 years. The fracture morphology was examined using SEM fractography. Dimpled fracture was found to be characteristic of fracture toughness specimens. Creep crack growth generally followed the fusion line region and was characterized as dimpled fracture mixed with cavities. These fracture morphologies were similar to those of an actual steam pipe. It was concluded that creep crack growth behavior was the prime failure mechanism of seam-welded steam pipes.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001833
EISBN: 978-1-62708-241-9
... of cleavage planes (a) before sputtering and (b) after sputtering Fig. 3 Morphology of the impact fracture. 4000× Fig. 4 Energy-dispersive analysis (EDX) of X-ray of the precipitated particles at (a) grain boundaries and (b) plain area of grain boundaries Fig. 5 Morphology...
Abstract
The failure of a boiler operating at 540 °C and 9.4 MPa was investigated by examining material samples from the near-failure region and by thermodynamic analysis. A scanning Auger microprobe, SEM, and commercial thermodynamic software codes were used in the investigation. Results indicated that the boiler failure was caused by grain-boundary segregation of phosphorous, tin, and nitrogen and the in-service formation of carbide films and granules on the grain boundaries.
Image
Published: 01 December 2019
Fig. 3 ( a ) Optical microstructure of unused tube shows equiaxed grain and lamellar carbide in grain boundary. ( b ) SEM image reveal grain boundary morphology. ( c , d ) the EDS analysis of chemical composition of carbide and matrix marked 1 and 2 on ( b ), respectively
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001787
EISBN: 978-1-62708-241-9
... Fig. 1 The macromorphology of the drilling bit ( a ) the fracture surface; ( b ) the beach mark; ( c ) the crack of the tooth profile Fig. 2 SEM morphology of the spline: ( a ) A; ( b ) B; ( c ) C; ( d ) D; ( e ) area D-detail Fig. 3 SEM morphology of the area C...
Abstract
A masonry type drill bit, designed for impact drilling in rock, fractured after a short time in service. Samples of the failed bit were analyzed using optical and scanning electron microscopy, quantitative metallography, and chemical analysis. The composition was found to be that of 18CrNi3Mo steel. Investigators also found evidence of inclusions and prior austenite grain size, although it was determined that neither played a role in the failure. Rather, according to test data, the failure occurred because of stress concentration (due to geometric discontinuities along the tooth profiles) and the cumulative effect of torque and force loading (the byproduct of continuous twisting and axial impact). Cracks readily initiate under these conditions then propagate quickly through what was found to be networks of tempered martensite, thus resulting in premature failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091036
EISBN: 978-1-62708-227-3
... of the surfaces exhibited primarily intergranular brittle and transgranular dimple-rupture features, whereas the core morphology consisted primarily of dimple-rupture features. Figure 1(c) shows some of the intergranular features, which also contain secondary grain-boundary separation, ductile hairlines...
Abstract
Socket head cap screws used in a naval application were failing in service due to delayed fracture. The standard ASTM A 574 screws were zinc plated and dichromate coated. Investigation (visual inspection, 1187 SEM images, chemical analysis, and tension testing) of both the failed screws and two unused, exemplar fasteners from the same lot supported the conclusion that the cap screws appear to have failed due to hydrogen embrittlement, as revealed by delayed cracking and intergranular fracture morphology. Static brittle overload fracture occurred due to the tension preload, and prior hydrogen charging that occurred during manufacturing. The probable source of charging was the electroplating, although postplating baking was reportedly performed as well. Recommendations included examining the manufacturing process in detail.
Image
in Overload Failure of a Bronze Worm Gear
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 1 Overload failure of a bronze worm gear. (a) An opened crack is shown with a repair weld, a remaining casting flaw, and cracking in the base metal. (b) Electron image of decohesive rupture in the fine-grain weld metal. Scanning electron micrograph. 119×. (c) Morphology in the large-grain
More
Image
Published: 01 January 2002
Fig. 6 Overload failure of a bronze worm gear ( example 4 ). (a) An opened crack is shown with a repair weld, a remaining casting flaw, and cracking in the base metal. (b) Electron image of decohesive rupture in the fine-grain weld metal. Scanning electron micrograph. 119×. (c) Morphology
More
Image
Published: 30 August 2021
Fig. 41 (a) Flange edge of a roll made from AISI D2 tool steel that chipped off during its initial use. Failure was due to poor carbide distribution and morphology, which embrittled the material. (b) Micrograph showing the poor carbide distribution and morphology in the roll. The grain size
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001328
EISBN: 978-1-62708-215-0
...) microstructures showed extensive grain boundary precipitation, in addition to stringers and fine matrix precipitates ( Fig. 3 ). Grain boundary carbide morphology was noted as both globular and “film-like”. Matrix precipitates were often seen as long carbide stringers, a result of the pipe forming process...
Abstract
During 5.7 years of service, dye penetrant inspection of Inconel 800H pigtail connections regularly showed cracks at weld toes. Weld repairs were not able to prevent reoccurrence but often aggravated the condition. Samples containing small, but detectable, reducer-to-pigtail cracks showed intergranular cracks originating at weld toes and filled with oxidation product, which precluded determination of the cracking mechanism. All weldments exhibited high degrees of secondary precipitates, with original fabrication welds exhibiting higher apparent levels than repair welds. SEM/EDS analysis showed base metal grain boundary precipitates to be primarily chromium carbides, but some titanium carbides were also observed. Failure was believed to result from the synergism of thermally driven tube distortion, which resulted in over-stress, and from the intergranular oxidation products and intergranular carbides which contributed to cracking. It was recommended that stresses be reduced and /or that materials and components be changed. Refinements in welding procedures and implementation of preweld/postweld heat treatments were recommended also.
1