1-20 of 485 Search Results for

grain boundaries

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045918
EISBN: 978-1-62708-235-8
... cleaning procedures to remove any trace of the cleaning acids be used. Auger electron spectroscopy Contaminants Grain boundaries Rocket nozzles Scanning electron microscopy Nb-106 Stress-corrosion cracking Intergranular fracture Since electron microscopy for the evaluation of fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001217
EISBN: 978-1-62708-235-8
...Abstract Abstract In a housing made of cast steel GS 20MoV12 3, weighing 42 tons, precipitates were found on the austenitic grain boundaries during metallographic inspection. According to their shape and type they were recognized as carbides that precipitated during tempering. In addition...
Image
Published: 01 June 2019
Fig. 3 Cracking in the bearing cup along prior austenite grain boundaries More
Image
Published: 01 January 2002
Fig. 52 Example of preferential oxidation of the grain boundaries in a cast high-temperature alloy steel More
Image
Published: 01 January 2002
Fig. 34 Quench cracks due to excessively large grain boundaries resulting from excessively high austenitizing temperature. Note cracking patterns associated with prior coarse austenite grain boundaries. Source: Ref 4 More
Image
Published: 01 January 2002
Fig. 37 Decohesion at the particle-matrix interface on grain boundaries of 316 stainless steel that failed by creep More
Image
Published: 01 January 2002
Fig. 31 Microstructure, linked voids, and split grain boundaries in the failed outlet header shown in Fig. 30 . 400× More
Image
Published: 30 August 2021
Fig. 54 Microstructure, linked voids, and split grain boundaries in the failed outlet header shown in Fig. 53 . Original magnification: 400× More
Image
Published: 30 August 2021
Fig. 26 Micrograph showing discontinuous cracking along the grain boundaries of steel due to hydrogen attack. Original magnification: 400× More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001253
EISBN: 978-1-62708-235-8
... examined metallographically. Investigation showed this was a case where flaky forgings were made from cast ingots with primary grain boundary cracks. This parallelity supports the often expressed opinion that both occurrences have the same origin, i.e. that hydrogen precipitation was the driving force...
Image
Published: 01 January 2002
Fig. 10 Metal carbide (MC) and grain-boundary film in a Waspaloy forging. The grain-boundary carbide films substantially reduce stress-rupture life. Transmission electron micrograph, 3400× More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001681
EISBN: 978-1-62708-234-1
...Abstract Abstract A microstructural analysis has been made of a burner nozzle removed from service in a coal gasification plant. The nozzle was a casting of a Co-29wt%Cr-19wt%Fe alloy. Extensive hot corrosion had occurred on the surface. There was penetration along grain boundaries...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001752
EISBN: 978-1-62708-241-9
...Abstract Abstract Results of failure analyses of two aircraft crankshafts are described. These crankshafts were forged from AMS 6414 (similar composition to AISI 4340) vacuum arc remelted steels with sulfur contents of 0.003% (low sulfur) and 0.0005% (ultra-low sulfur). A grain boundary sulfide...
Image
Published: 01 December 2019
Fig. 4 SEM micrograph showing surface and grain boundary oxidation More
Image
Published: 01 December 1992
Fig. 5 Grain-boundary precipitation in the structure of the segment. The matrix is tempered martensite with secondary carbides. Nital etched. 310×. More
Image
Published: 01 January 2002
Fig. 31 Grain-boundary and intragranular precipitation at the hot side of the hot-gas casing of a gas turbine. Material is 321 stainless steel. Etched successively in Vilella's reagent, methanolic aqua regia, and Groesbeck's reagent to darken carbides More
Image
Published: 01 January 2002
Fig. 4 Dimpled grain-boundary fracture in a small wedge-opening fracture sample, which aided formation of methane bubbles on the grains of 2.25 Cr-1.0 Mo steel exposed to high-pressure (21 MPa, or 3 ksi) hydrogen at 475 °C (887 °F). This is below the temperature where hydrogen attack would occur More
Image
Published: 01 January 2002
Fig. 13 Grain-boundary carbide films in a Waspaloy forging. The films substantially reduced stress-rupture life. The specimen was electropolished before replication in a solution containing (by volume) 100 parts hydrochloric acid, 50 parts sulfuric acid, and 600 parts methanol. Transmission More
Image
Published: 01 January 2002
Fig. 30 Anodic polarization behavior of an active-passive alloy with grain-boundary depleted zones More
Image
Published: 30 August 2021
Fig. 21 Embrittling effect of grain-boundary envelopes of carbide in carburized case. (a) Slow cooled after carburizing, followed by reheating to 775 °C (1430 °F) and quenching. (b) Surface cracking and chipping of shear blade after it received the treatment described for (a) More