1-20 of 38 Search Results for

gas-tungsten arc welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047598
EISBN: 978-1-62708-217-4
...Abstract Abstract Two aircraft-engine tailpipes of 19-9 DL stainless steel (AISI type 651) developed cracks along longitudinal gas tungsten arc butt welds after being in service for more than 1000 h. Binocular-microscope examination of the cracks in both tailpipes revealed granular, brittle...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047602
EISBN: 978-1-62708-235-8
...Abstract Abstract Parts of 21Cr-6Ni-9Mn stainless steel that had been forged at about 815 deg C (1500 deg F) were gas tungsten arc welded. During postweld inspection, cracks were found in the HAZs of the welds. Welding had been done using a copper fixture that contacted the steel in the area...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
...Abstract Abstract This case study describes the failure analysis of a steel nozzle in which cracking was observed after a circumferential welding process. The nozzle assembly was made from low-carbon CrMoV alloy steel that was subsequently single-pass butt welded using gas tungsten arc welding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091048
EISBN: 978-1-62708-235-8
...Abstract Abstract A welded ferritic stainless steel heat exchanger cracked prior to service. The welding filler metal was identified as an austenitic stainless steel and the joining method as gas tungsten arc welding. Investigation (visual inspection, SEM images, 5.9x images, and 8.9x/119x...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
...Abstract Abstract A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001351
EISBN: 978-1-62708-215-0
... rate on the order of 1 x 10−7 cu cm/s (6 x 10−8 cu in./s). Optical metallography revealed numerous pits and cracks on the surfaces of the bellow convolutes, which had been welded to one another using an autogenous gas tungsten arc welding process. Microhardness measurements indicated that the bellows...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
...Abstract Abstract A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001647
EISBN: 978-1-62708-235-8
... that is subsequently sealed by depositing a full-penetration, autogenous, gas tungsten arc weld (GTAW) ( Fig. 2 ). The GTAW closure-welding system was developed and qualified before being used for production packaging of plutonium-bearing materials. The closure welding system and qualification efforts are described...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047590
EISBN: 978-1-62708-217-4
...Abstract Abstract A weld in a fuel-line tube broke after 159 h of engine testing. The 6.4-mm (0.25-in.) OD x 0.7-mm (0.028-in.) wall thickness tube and the end adapters were all of type 347 stainless steel. The butt joints between tube and end adapters were made by automated gas tungsten arc...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047636
EISBN: 978-1-62708-217-4
... of overaging from the welding heat. Additional support for the oil line was installed to reduce vibration and minimize fatigue of the elbow. Gas tungsten arc welding Overaging Penetration Pipe bends Repair welding 6061-T6 UNS A96061 Fatigue fracture Joining-related failures Several elbow...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
... should be wiped with a clean cloth just prior to welding. Also, a word of caution: solvents are generally flammable and can be toxic. Ventilation should be adequate. Cleaning should continue until cloths are free of any residues. Second, when gas tungsten arc welding, a 19 mm (0.75 in.) diam ceramic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001667
EISBN: 978-1-62708-235-8
.... This paper will focus on the equipment and procedures used in an on-site metallographic analysis of two gas tungsten-arc welded, large diameter, titanium alloy (Ti-6Al-4V) cylinders. In this case, a blue-colored oxidized surface region was observed adjacent to the circumferential butt weld joining the two...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... include: Underbead cracks Gas porosity Inclusions—slag, oxides, or tungsten metal Incomplete fusion Inadequate penetration Solidification cracks, liquation cracks Failure to meet strength, ductility, or toughness requirements is another cause for rejection of weldments. Details...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0045911
EISBN: 978-1-62708-230-3
... kPa (875 psi) and 420 °C (790 °F). Each bellows was of a three-ply design; each ply contained two longitudinal gas tungsten arc welds and was cold formed with 13 convolutions. The welds had been inspected with dye penetrant. The Inconel 600 had been received as 1.5-mm (0.060-in.) thick sheets, hot...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... Aluminum alloy 5083-O was the specified seamless pipe composition, and the weld filler metal was 5183. The ASTM designation of the alloy piping is not known. Either the gas tungsten are or gas metal arc welding process was used to make the butt weld where the failure occurred. Specimen Selection...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001329
EISBN: 978-1-62708-215-0
... … … … Casting 92.89 4.69 2.42 … … … Although the fittings and valve bodies were welded assemblies (gas-tungsten arc welded socket welds), the procedures used in their installation required the use of a welding flux. This flux was incorporated into the weld by applying a mixture of flux...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001028
EISBN: 978-1-62708-214-3
... to the forward end of the tank by a gas tungsten arc weld (GTAW) around the periphery. Visual Examination of General Physical Features Physical and dimensional features were recorded during the removal of the area of the tank containing the fracture. The general surface of the shell end was distorted from...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001580
EISBN: 978-1-62708-229-7
... is back-filled with helium and welded closed. The Gas Tungsten Arc Welding (GTAW) autogenous process is used to close the canister. The canister is clamped in place and the GTAW electrode is moved around the outside of the canister. Before the continuous weld is started, three tacks approximately 90...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001561
EISBN: 978-1-62708-229-7
... with ER308 electrode ( Table 1 ). The welding process used was GTAW (Gas Tungsten Arc Welding). The repair area was in its R-2 stage (two repairs completed). The pipe had also been counterbored prior to installation for ease in pipe fit-up prior to welding. The crack on the outside surface of the pipe...