1-20 of 36 Search Results for

gas-shielded arc welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047645
EISBN: 978-1-62708-229-7
... of the welding torch were overhauled to ensure that leak-in or entrainment of air was eliminated. Also, the purity of the shielding-gas supplies was rechecked to make certain that these had not become contaminated. Contaminants Gas turbine engines Shielded arc welding Thermal stresses Ti-5Al-2.5Sn UNS...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
... Abstract A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001647
EISBN: 978-1-62708-235-8
...-penetration, autogenous, gas tungsten arc weld (GTAW) ( Fig. 2 ). The GTAW closure-welding system was developed and qualified before being used for production packaging of plutonium-bearing materials. The closure welding system and qualification efforts are described in Ref 1 and 2 . Fig. 2 Full...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
.... Second, when gas tungsten arc welding, a 19 mm (0.75 in.) diam ceramic nozzle with gas lens collect body is recommended. An argon gas flow rate of 28 L/min (60 ft 3 /min) is optimum. Smaller nozzles are not recommended. Argon back gas shielding is mandatory at a slight positive pressure to avoid...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001207
EISBN: 978-1-62708-235-8
... Abstract Pipes made of low-carbon Thomas steel had been welded longitudinally employing the carbon-arc process with bare electrode wire made for argon-shielded arc welding. Difficulties were encountered during the cutting of threads because of the presence of hard spots. Microstructural...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... at the weld toe Cracks—hot or cold, longitudinal or transverse, crater and at weld toe Gas porosity Arc strike Spatter Backing piece left on: failure to remove material placed at the root of a weld joint to support molten weld metal Subsurface features that are causes for rejection...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
... of brittle fracture of welded ship structure. SS Schenectady , which fractured at its outfitting dock, was one of 19 Liberty ships that experienced brittle cracking of the welded structure. While shielded metal arc welding was common prior to 1940, its application during ship building was limited...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001667
EISBN: 978-1-62708-235-8
..., can cause a reduction in the mechanical properties of the material [ 1 ]. The potential absorption of oxygen into titanium surfaces is greatly increased during welding operations unless the environment is strictly controlled. Argon is generally used as a shielding gas in the tungsten-arc welding...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001837
EISBN: 978-1-62708-241-9
... using gas tungsten arc welding process and filler wire of the similar composition as that of steel sheet. Argon gas of 99.99% purity was used for shielding. No further heat treatment was carried out after welding. No cracks were observed in the weld joint and adjacent area during visual inspection...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... fiber reinforced polymer composite ft foot FTA fault-tree analysis FTIR Fourier transform infrared spectroscopy g gram G energy release rate; shear modulus GMAW gas metal arc welding GPa gigapascal GPC gel permeation chromatography GTAW gas tungsten arc weld h hour H Grossmann number hcp hexagonal close...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... Electric resistance weld flaws Flash weld flaws Furnace butt weld flaws Hook cracks Cold welds Incomplete fusion Stitching Inclusions Shielded metal arc welding flaws Gas metal arc welding flaws Submerged arc welding flaws Misalignment Porosity Incomplete fusion Incomplete...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047558
EISBN: 978-1-62708-236-5
.... The shaft was polished, the pulley was bored out, and a bushing was inserted, but after indeterminate service, the pulley turning recurred. At this time, the shaft was removed for resurfacing. After belt grinding, the keyway was filled in and the surface of the shaft was built up by gas metal arc welding...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
...-hardness region (b) (a) Electric flash welding, electric-resistance welding, or electric-induction welding without the addition of extraneous metals. (b) These arc a problem in gathering lines carrying sour gas (gas containing H 2 S). Causes of Preservice Test Failures As shown...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001447
EISBN: 978-1-62708-235-8
... the electrical conductivity and a small amount of oxygen is unavoidable in materials for conductors in electrical engineering. In gas welding even a neutral oxygen-acetylene flame will cause “gassing” as seen in Figure 11 . Although the use of a shielding gas will serve to prevent this to a large extent...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001041
EISBN: 978-1-62708-214-3
... 950X, a high-strength low-alloy steel, and to include a fillet-welded diaphragm, as detailed in Fig. 5 . Welding was performed with the gas metal arc process using 1.1 mm (0.045in.) diam AWS A5.18 ER70S-6 filler metal and a 75% argon/25% CO 2 shielding gas. The welding procedure was governed...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... a stream of gas consisting of 55% H 2 S, 39% CO 2 , 5% H 2 , and 1% hydrocarbons at 40 °C (100 °F) and 55 kPa (8 psi). Specifications required the clapper to be made of 13-mm ( 1 2 -in.) thick ASTM A36 steel, stress relieved and cadmium plated. Investigation Fracture occurred at the welded...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001304
EISBN: 978-1-62708-215-0
.... The analysis indicated that the weld joint in the diffuser intake flange (type 310 stainless steel to Corten steel) contained diffusion-zone solidification cracks. The joints had been produced using the mechanized gas-metal arc welding process. Cracking was attributed to improper control of welding parameters...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... HV) in the affected areas. This was believed to be due to improper and incomplete cleaning by grinding after performing carbon arc or flame gouging to remove a weld defect. Fig. 13 Cross section taken from extracted through-thickness part after metallographic preparation and macroetching using...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... of 300 mm (12 in.). For welding approaches, the working distance is approximately 25 mm (1 in.). Atmosphere control is maintained using either an inert build chamber, common for laser-based processes; vacuum in the case of electron beam processes; and a localized shielding gas for arc welding approaches...