Skip Nav Destination
Close Modal
Search Results for
gas wells
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 278 Search Results for
gas wells
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001117
EISBN: 978-1-62708-214-3
... Microstructure of “representative” P-110 tempered martensite. 324× Fig. 9 Microstructure of split No. 1. 356× Abstract Several tin plated, low-alloy steel couplings designed to connect sections of 180 mm (7 in.) diam casing for application in a gas well fractured under normal operating...
Abstract
Several tin plated, low-alloy steel couplings designed to connect sections of 180 mm (7 in.) diam casing for application in a gas well fractured under normal operating conditions. The couplings were purchased to American Petroleum Institute (API) specifications for P-110 material. Chemical analysis and mechanical testing of the failed couplings showed that they had been manufactured to the API specification for Q-125, more stringent specification than P-110, and met all requirements of the application. Fractographic examination showed that the point of initiation was an embrittled region approximately 25 mm (1 in.) from the end of the coupling. The source of the embrittlement was determined to be hydrogen charging during tin plating. Changes in the plating process were recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001116
EISBN: 978-1-62708-214-3
.... The pipe was obtained from a distributor to replace an old string in a well. The well was a hydraulically jet pumped well about 1800 m (6000 ft) deep that produced oil, water, and gas. The gas was sour and the H 2 S content of the gas in the pump separator at the surface was about 10,000 ppm. In this well...
Abstract
Two failures of AP15A grade J-55 electric resistance welded (ERW) tubing in as our gas environment were investigated. The first failure occurred after 112 days of service. Replacement pipe failed 2 days later. Surface examination of the failed tubing indicated that fracture initiated at the outside surface. Metallographic analysis showed that the fracture originated in the upturned fibers adjacent to the ERW bond line. Cross sections of the weld were removed from three random locations in the test sample. At each location, the up turned fibers of the weld zone contained bands of hard-appearing microstructure. Hardness measurements confirmed these observations. The cracks followed these bands. It was concluded that the tubing failed from sulfide stress cracking, which resulted from bands of susceptible microstructure in the ERW zone. The banded microstructure in the pipe suggested that chemical segregation contributed to the hard areas. Postweld normalized heat treatment apparently did not sufficiently reduce the hardness of these areas.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001820
EISBN: 978-1-62708-241-9
...″ID 2500# ASTM A216-WCC) which are the focal point of this failure case study were installed in some of the upstream facilities of Khangiran’s sour gas wells. Table 1 shows working condition of the flow control valve in one of the sour gas wells and indicates that the sulfur content is in the level...
Abstract
A group of control valves that regulate production in a field of sour gas wellheads performed satisfactorily for three years before pits and cracks were detected during an inspection. One of the valves was examined using chemical and microstructural analysis to determine the cause of failure and provide preventive measures. The valve body was made of A216-WCC cast carbon steel. Its inner surface was covered with cracks stemming from surface pits. Investigators concluded that the failure was caused by a combination of hydrogen-induced corrosion cracking and sulfide stress-corrosion cracking. Based on test data and cost, A217-WC9 cast Cr–Mo steel would be a better alloy for the application.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001013
EISBN: 978-1-62708-234-1
... Abstract A wall section of a carbon steel choke body in gas service at 4400 psig blew out three months after the use of a corrosion inhibitor was stopped. Corrosion damage occurred in ripples, leaving both smoothly polished and unattacked areas. The corrodent in condensate wells was principally...
Abstract
A wall section of a carbon steel choke body in gas service at 4400 psig blew out three months after the use of a corrosion inhibitor was stopped. Corrosion damage occurred in ripples, leaving both smoothly polished and unattacked areas. The corrodent in condensate wells was principally carbon dioxide dissolved in water condensed from the gas stream, with organic acids possibly an aggravating factor. A gas analysis showed no other corrosive agents. No metallurgical or fabrication defects were found in the carbon steel part. The mode of attack was corrosion-erosion, caused by the corrosive, high velocity gas flow. The corrosion rate of either the inhibited or uninhibited gas stream was too high for equipment in high pressure gas service. Type 410 (12% Cr) stainless steel was recommended for the choke bodies because other equipment such as valves made of type 410 showed no evidence of corrosion damage after three years' exposure. This change was made five years ago and there have been no failures since.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001115
EISBN: 978-1-62708-214-3
... was selected for analysis. This oil field contained 12 wells that were completed with 9% Ni steel production tubing in the early 1950s. Gas lift is used to enhance production. The wells are approximately 300 m (10,000 ft) deep.At the time of failure, this particular well was producing about 43 barrels...
Abstract
During a work over of an oil well, the 9% Ni steel production tubing parted three times as it was being pulled from the well. The tubing had performed satisfactorily for more than 30 years in the well A representative failure, a circumferential fracture in a connection, was analyzed. Reported to be a hydril CS connection, the pin end parted near the last threads. The external surface exhibited mechanical damage marks from the fishing operation. No signs of external corrosion or damage were detected. Visual surface examination revealed shear lips at the outside pipe, indicating that the fracture initiated at the inside surface and grew across the wall. Longitudinal cross sections revealed heavy corrosion damage to the inside pipe surface. Metallographic examination indicated that the tubing failed as a result of severe weakening from internal corrosion. Gray-colored corrosion deposits, which penetrated the pipe throughout the grain boundaries of the material and concentrated in the matrix in a layer near the inside surface of the pipe, were observed. The presence of H2S in the produced fluids and the appearance of the gray deposit indicated that the tube suffered H2S corrosion. Chemical analysis of the base metal and corrosion deposits did not detect iron or nickel sulfides, however Replacement of the remaining pipe strings according to a scheduled program was recommended. Because 9% Ni steel was not available, 13% Cr martensitic stainless steel was recommended as a replacement.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001641
EISBN: 978-1-62708-235-8
... for cleaning and surface preparation, as well as for the actual plating deposition. Porosity that is linked to the surface can trap liquids from the cleaning and surface preparation baths, and these liquids are usually quite acidic. The trapped acid may initiate corrosion and generate hydrogen gas as a result...
Abstract
Near-surface porosity in zinc die castings that were subsequently plated with copper, nickel, and bright chromium was causing blemishes in the plating. Identifying die casting turbulence and hot spots were keys to process modifications that subsequently allowed porosity to be greatly minimized.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001179
EISBN: 978-1-62708-228-0
... to fractures of the kind considered here. It is noteworthy that the damage appeared only in a certain well. Its cause, therefore, was bound to lie in the specific conditions of this well. Subsequently it was found that the natural gas drilled in these locations had an exceptionally high hydrogen sulphide...
Abstract
During natural gas drilling in the EMS region in 1956, considerable numbers of longitudinal cracks and transverse fractures occurred in the connecting pieces of the bore rods. The connectors were screwed onto the rods by means of a fine thread and tightly joined with it by shrinkage at 530 deg C. The connectors were made of SAE 4140 Cr-Mo steel. The material for the rod pipes was Fe-0.4C-1Mn steel. Structural stresses played a role in the cracking. Iron sulfide formed on the fracture planes and flake-like stress cracks occurred in the steel. The hydrogen sulfide content of the gas was the cause of damage. Hydrogen liberated by reaction with the iron caused the formation of iron sulfide after penetration of the steel, which had an explosive effect during molecular separation under high pressure. This in turn caused the crack formation in conjunction with the external and residual stresses.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001824
EISBN: 978-1-62708-241-9
... T. , Asahi H. , Kaneta H. : Galvanic corrosion in oil and gas environment . Corrosion 96, paper no. 63, NACE International , Houston, TX ( 1996 ) 10.1507/endocrj.43.709 . 7. Tuttle R.N. , Tresder R.S. : Life prediction of high pressure gas wells . Mater. Perform...
Abstract
Nineteen out of 26 bolts in a multistage water pump corroded and cracked after a short time in a severe working environment containing saline water, CO 2 , and H 2 S. The failed bolts and intact nuts were to be made from a special type of stainless steel as per ASTM A 193 B8S and A 194. However, the investigation (which included visual, macroscopic, metallographic, SEM, and chemical analysis) showed that austenitic stainless steel and a nickel-base alloy were used instead. The unspecified materials are more prone to corrosion, particularly galvanic corrosion, which proved to be the primary failure mechanism in the areas of the bolts directly exposed to the working environment. Corrosion damage on surfaces facing away from the work environment was caused primarily by chloride stress-corrosion cracking, aided by loose fitting threads. Thread gaps constitute a crevice where an aggressive chemistry is allowed to develop and attack local surfaces.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046252
EISBN: 978-1-62708-229-7
... Abstract A type 321 stainless steel bellows expansion joint on a 17-cm (6 in.) OD inlet line (347 stainless) in a gas-turbine test facility cracked during operation. The line carried high-purity nitrogen gas at 1034 kPa (150 psi) with a flow rate of 5.4 to 8.2 kg/s (12 to 18 lb/s). Cracking...
Abstract
A type 321 stainless steel bellows expansion joint on a 17-cm (6 in.) OD inlet line (347 stainless) in a gas-turbine test facility cracked during operation. The line carried high-purity nitrogen gas at 1034 kPa (150 psi) with a flow rate of 5.4 to 8.2 kg/s (12 to 18 lb/s). Cracking occurred in welded joints and in unwelded portions of the bellows. The bellows were made by forming the convolution halves from stainless steel sheet, then welding the convolutions together. Evidence from visual examination, liquid penetrant inspection chemical analysis, hardness tests, and metallographic examination of sections etched with Vilella's reagent supports the conclusions that failure of the bellows occurred by intergranular fatigue cracking. Secondary degrading effects on the piping existed as well. Recommendations included the acceptability of Type 321 stainless steel (provided open-cycle testing does not result in surface oxidation and crevices) Although type 347 stainless steel would be better, and Inconel 600 would be an even better choice. Welds would also need modified processing for reheating and annealing. Prevention of oil leakage into the system would minimize carburization of the piping and bellows.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001557
EISBN: 978-1-62708-234-1
... into the reasons for the development of cracks with the help of scanning electron microscope, optical microscope and gas analysis. Based on the investigation observations and findings it was concluded that: (i) the sub-surface discontinuous cracks noticed at the bore edges as well as in the fillet radius...
Abstract
A number of machined end frame steel forgings made of Cr-Si-Mn alloy showed tiny cracks during magnetic particle inspection after heat treatment. The cracks were mostly confined to base edges and fillet radius. No significant abnormality was observed in chemical composition and microstructure. SEM, optical microscopy, and gas analysis revealed that the subsurface discontinuous cracks at the bore edges and in the fillet radius of the heat-treated end frame component had occurred due to hydrogen embrittlement, and not because of faulty heat treatment. This conclusion was supported by the presence of cracklike indications in machined bore surface of the annealed part.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001189
EISBN: 978-1-62708-218-1
... steel C 45 (Material No. 1.0503) according to DIN 17200 and were normalized. Gear 1 with 1905 h of operation showed at one side pittings on both flanks of the teeth as well as incipient fractures. Gear 2 with 1713 h of operation also showed at one side incipient fractures of the nitride layers...
Abstract
Two fuel injection pump gears that were nitrided in a cyanide bath were submitted by the engine manufacturer for examination of hardness distribution and failure analysis. The gears showed signs of wear after only comparatively brief operation. They were made of normalized unalloyed steel C 45 (Material No. 1.0503) according to DIN 17200 and were normalized. Gear 1 with 1905 h of operation showed at one side pittings on both flanks of the teeth as well as incipient fractures. Gear 2 with 1713 h of operation also showed at one side incipient fractures of the nitride layers at the outer part of the teeth. The nitride layer did not stand up to the high and one-sided compressive stress applied in this case and could not prevent pitting. It could even have accelerated the wear by the incipient break down. Gas nitriding at greater depth under application of a suitable special steel or case hardening would have been better under these circumstances.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001827
EISBN: 978-1-62708-241-9
... in critical industries, such as power generation, oil and gas, process plants, aviation, as well as smaller related industries to drive other machinery, to generate electricity, or to generate electricity and produce steam as in a combined cycle where the system incorporates a gas turbine, steam turbine...
Abstract
Gas turbines and other types of combustion turbomachinery are susceptible to hot corrosion at elevated temperatures. Two such cases resulting in the failure of a gas turbine component were investigated to learn more about the hot corrosion process and the underlying failure mechanisms. Each component was analyzed using optical and scanning electron microscopy, energy dispersive spectroscopy, mechanical testing, and nondestructive techniques. The results of the investigation provide insights on the influence of temperature, composition, and microstructure and the contributing effects of high-temperature oxidation on the hot corrosion process. Preventative measures are also discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051870
EISBN: 978-1-62708-228-0
..., including sand cleanout, acid wash, and nitrogen lifts. The tubing had been on 38 jobs when the failure occurred. Seventeen of the 38 jobs involved wells containing H 2 S gas. H 2 S concentration varied from 0.1% to 7%. The tubing had seen relatively high usage with 262,630 total running feet (80,050 m...
Abstract
Coiled tubing with 80 ksi yield strength manufactured to a maximum hardness of 22 HRC to meet NACE Standard MR0175 requirement for sour gas service failed after being on 38 jobs (70% of its estimated fatigue life). A transverse crack where a leak occurred was identified as the primary failure point. Numerous OD surface fissures were revealed by a low-power microscope. A brittle zone near the OD, identified as a sulfide stress crack with additional fatigue cracking was revealed by SEM. Sulfide stress cracking defined as brittle failure by cracking under the combined action of tensile stress and corrosion in the presence of water and hydrogen sulfide was concluded to have initiated the failure which was propagated by fatigue. It was recommended that in the presence of known corrosive environments the tubing should not be used above 50% of its theoretical fatigue life.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001775
EISBN: 978-1-62708-241-9
...Temperature, Pressure, and Average Chemical Composition of Gas Mixture Upstream of the Reaction Tower Table 1 Temperature, Pressure, and Average Chemical Composition of Gas Mixture Upstream of the Reaction Tower Temp, °C Pressure, kg/cm 2 Composition, vol.% HCl H 2 CH 4 C 2 H 6...
Abstract
A bent Ni-Cu Monel 400 alloy tube, which operated as part of a pipeline in a petrochemical distillery, failed by through-thickness cracking. The pipeline was used to carry a stream of gaseous hydrocarbons containing hydrochloric acid (HCl) into a reaction tower. The tower provided a caustic solution (NaOH) to remove HCl from the stream, before the latter was directed to a burner. Metallographic examination showed that the cracks were intergranular and were frequently branched. Although nominal chemical composition of the component was found within the specified range, energy dispersive x-ray analysis (EDXA) indicated significant segregation of sulfur and chlorine along the grain boundaries. Failure was attributed to hypochlorous-acid (HClO)-induced stress-corrosion cracking (SCC). The HClO was formed by the reaction of HCl with atmospheric O 2 that entered the tube during shutdowns and startups. Residual stresses, originating from in situ bend forming of the tube during assembly of the line, provided a driving force for crack growth, and the segregation of sulfur on grain boundaries made the material more susceptible to cracking.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001046
EISBN: 978-1-62708-214-3
...Test rack corrosion data for specimens exposed for 300h to 760 °C (1400 °F) combustion gas containing HCl and Cl<sub>2</sub> Table 2 Test rack corrosion data for specimens exposed for 300h to 760 °C (1400 °F) combustion gas containing HCl and Cl 2 Alloy Orientation to gas flow Depth...
Abstract
The thin plates within a type 309 stainless steel chlorinated solvent combustion preheater/heat exchanger designed to process fumes from a solvent coating process showed severe corrosion within 6 months of service. Within a year corrosion had produced holes in the plates, allowing gases to shunt across the preheater/exchanger. Metallographic examination of the plates showed that accelerated internal oxidation had been the cause of failure. Corrosion racks of candidate alloys (types 304, 309, and 316 stainless steels, Inconel 600, Inconel 625, Incoloy 800, Incoloy 825, and Inco alloy C-276) were placed directly in the hot gas stream, containing HCl and Cl2, for in situ testing. Results of this investigation showed that nickel-chromium corrosion-resistant alloys, such as Inconel 600, Inconel 625, and Inco alloy C-276, performed well in this environment. Laboratory testing of the same alloys, along with Inconel alloys 601, 617, and 690 and stainless steel type 347 was also conducted in a simulated waste incinerator nitrogen atmosphere containing 10% Co2, 9% O2, 4% HCl, 130 ppm HBr and 100 ppm SO2 at 595, 705, 815, and 925 deg C (1100, 1300,1500, and 1700 deg F). The tests confirmed the suitability of the nickel-chromium alloys for such an environment. Inconel 625 was selected for fabrication of a new preheater/exchanger.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001076
EISBN: 978-1-62708-214-3
... on both sides, forming a ditchlike geometry. An energy-dispersive spectroscopy (EDS) qualitative analysis detected a large quantity of sulfur, as well as the presence of silver, in the deposit under the arrow in Fig. 7 . The results of the EDS analysis are shown in Fig. 8 . The EDS attack...
Abstract
The silver layer on a thrust bearing face experienced electrostatic discharge attack (the bombardment of an in-line series of individual sparks onto the soft bearing face), which destroyed the integrity of the bearing surface. The electrical attack appeared as scratches to the naked eye. Macrophotography showed that the attack was more severe at one edge of each pad, resulting in deeper grooving and a buildup of deposits, mostly silver sulfides. Microstructural analysis of a cross section indicated that the interface between the silver overlay and the substrate (beryllium copper) was sound and free of voids and foreign material. Corrosion products contained a large quantity of sulfur. The probable cause of the attack was the presence of electrical current within the system, with sulfides a possible contributing factor. Elimination of residual magnetism and grounding of the rotating system at appropriate locations were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001556
EISBN: 978-1-62708-218-1
... of optical as well as scanning electron microscope including gas analysis. Based on the investigation results and observations, the brittle cracking along forked eye-end radius portion was attributed to hydrogen embrittlement occuring during chrome plating process. In this connection, the following factors...
Abstract
A few Cr-Mo steel piston rods from different production batches were found identically cracked in the eye end near the radius after chrome plating and baking treatment. Two of them cracked in the plating stage itself instantly broke on slight tapping. Cracking initiated from the outer base surface of the forked eye end. The 40 mm diam forged piston rods were subjected to plating after heavy machining on the part without any stress-relieving treatment. Also, time lapses between plating and baking were varied from 3 to 11 h. The brittle cracking along forked eye-end radius portion was attributed to hydrogen embrittlement that occurred during chrome plating.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0092148
EISBN: 978-1-62708-235-8
... Abstract Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized...
Abstract
Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized. The cylinder in which the spool fitted was made of 1117 steel, also gas carburized. Investigation (visual inspection, low magnification images, 400x images, metallographic exam, and hardness testing) supported the conclusion that momentary sliding contact between the spool and the cylinder wall caused unstable retained austenite in the failed cylinder to transform to martensite. The increase in volume resulted in sufficient size distortion to cause interference between the cylinder and the spool, seizing, and loss of flow control. The failed parts had been carburized in a process in which the carbon potential was too high, which resulted in a microstructure having excessive retained austenite after heat treatment. Recommendations included modifying the composition of the carburizing atmosphere to yield carburized parts that did not retain significant amounts of austenite when they were heat treated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047602
EISBN: 978-1-62708-235-8
... Abstract Parts of 21Cr-6Ni-9Mn stainless steel that had been forged at about 815 deg C (1500 deg F) were gas tungsten arc welded. During postweld inspection, cracks were found in the HAZs of the welds. Welding had been done using a copper fixture that contacted the steel in the area of the HAZ...
Abstract
Parts of 21Cr-6Ni-9Mn stainless steel that had been forged at about 815 deg C (1500 deg F) were gas tungsten arc welded. During postweld inspection, cracks were found in the HAZs of the welds. Welding had been done using a copper fixture that contacted the steel in the area of the HAZ on each side of the weld but did not extend under the tungsten arc. In SEM examination, the cracks appeared to be intergranular and extended to a depth of approximately 1.3 mm (0.05 in.). The crack appearance suggested that the surface temperature of the HAZ could have melted a film of copper on the fixture surface and that this could have penetrated the stainless steel in the presence of tensile thermal-contraction stresses. The cracks in the weldments were a form of liquid-metal embrittlement caused by contact with superficially melted copper from the fixture and subsequent grain-boundary attack of the stainless steel in an area under residual tensile stress. The copper for the fixtures was replaced by aluminum. No further cracking was encountered.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047220
EISBN: 978-1-62708-220-4
... Abstract Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron...
Abstract
Two oil-pump gears broke after four months of service in a gas compressor that operated at 1000 rpm and provided a discharge pressure of 7240 kPa (1050 psi). The compressor ran intermittently with sudden starts and stops. The large gear was sand cast from class 40 gray iron with a tensile strength of 290 MPa (42 ksi) at 207 HRB. The smaller gear was sand cast from ASTM A536, grade 100-70-03, ductile iron with a tensile strength of 696 MPa (101 ksi) at 241 HRB. Analysis (metallographic examination) supported the conclusion that excessive beam loading and a lack of ductility in the gray iron gear teeth were the primary causes of fracture. During subsequent rotation, fragments of gray iron damaged the mating ductile iron gear. Recommendations included replacing the large gear material with ASTM A536, grade 100-70-03, ductile iron normalized at 925 deg C (1700 deg F), air cooled, reheated to 870 deg C (1600 deg F), and oil quenched. The larger gear should be tempered to 200 to 240 HRB, and the smaller gear to 240 to 280 HRB.
1