1-20 of 80 Search Results for

gas metal arc welding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 30 August 2021
Fig. 35 Radiograph showing cluster porosity in gas metal arc welding process due to disruption of shielding gas. Incomplete penetration (IP) of the weld root is also shown. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0047392
EISBN: 978-1-62708-221-1
... fracture of the roadarm was caused by a combination of too high a carbon equivalent in the castings and the lack of preheating and postheating during the welding procedure. A pre-heat and tempering after welding were added to the welding procedure. Gas metal arc welding Heat affected zone Sand...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001304
EISBN: 978-1-62708-215-0
.... The joints had been produced using the mechanized gas-metal arc welding process. Cracking was attributed to improper control of welding parameters, and failure was attributed to weld defects. Air intakes Corrosion-resistant steels Diffusers Exhaust systems Low-cycle fatigue Transition joints Weld...
Image
Published: 01 January 2002
Fig. 43 Incomplete fusion in a pulsed gas metal arc spot weld involving ERNiCu-7 (Monel 60), 0.89 mm (0.035 in.) diameter filler metal, copper-nickel to steel weldment. Etchant, 50% nitric-50% acetic acid. (a) View showing IF flaw. 30×. (b) View showing that IF was eliminated by tapering More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047598
EISBN: 978-1-62708-217-4
... of the tailpipes, specimens were subjected to 72-h immersion in boiling, acidified copper sulfate (Strauss test). These specimens showed separation of the gas tungsten arc weld from the base metal with complete dissolution of the HAZ. A specimen from the resistance seam weld remote from the gas tungsten arc weld...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047558
EISBN: 978-1-62708-236-5
.... The shaft was polished, the pulley was bored out, and a bushing was inserted, but after indeterminate service, the pulley turning recurred. At this time, the shaft was removed for resurfacing. After belt grinding, the keyway was filled in and the surface of the shaft was built up by gas metal arc welding...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... pipe composition, and the weld filler metal was 5183. The ASTM designation of the alloy piping is not known. Either the gas tungsten are or gas metal arc welding process was used to make the butt weld where the failure occurred. Specimen Selection The through-wall fracture was located in a 200...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047602
EISBN: 978-1-62708-235-8
... of the stainless steel in an area under residual tensile stress. The copper for the fixtures was replaced by aluminum. No further cracking was encountered. Gas tungsten arc welding Grain boundaries Heat affected zone Residual stress Tensile stress 21Cr-6Ni-9Mn Liquid metal induced embrittlement...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047645
EISBN: 978-1-62708-229-7
... Abstract An outer fan-duct assembly of titanium alloy Ti-5Al-2.5Sn (AMS 4910) for a gas-turbine fan section cracked 75 mm (3 in.) circumferentially through a repair weld in an arc weld in the front flange-duct segment. Examination of the crack with a binocular microscope revealed no evidence...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... at the weld toe Cracks—hot or cold, longitudinal or transverse, crater and at weld toe Gas porosity Arc strike Spatter Backing piece left on: failure to remove material placed at the root of a weld joint to support molten weld metal Subsurface features that are causes for rejection...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
... Abstract A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... fiber reinforced polymer composite ft foot FTA fault-tree analysis FTIR Fourier transform infrared spectroscopy g gram G energy release rate; shear modulus GMAW gas metal arc welding GPa gigapascal GPC gel permeation chromatography GTAW gas tungsten arc weld h hour H Grossmann number hcp hexagonal close...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
..., and, in the case of metallic structures, welding is probably the most common and useful method of fabrication. However, weld failures are not uncommon and therefore must be avoided. One of the early examples of dramatic failure of all arc-welded construction took place after the fabrication of Liberty ships...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091048
EISBN: 978-1-62708-235-8
... Abstract A welded ferritic stainless steel heat exchanger cracked prior to service. The welding filler metal was identified as an austenitic stainless steel and the joining method as gas tungsten arc welding. Investigation (visual inspection, SEM images, 5.9x images, and 8.9x/119x images etched...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001647
EISBN: 978-1-62708-235-8
...-penetration, autogenous, gas tungsten arc weld (GTAW) ( Fig. 2 ). The GTAW closure-welding system was developed and qualified before being used for production packaging of plutonium-bearing materials. The closure welding system and qualification efforts are described in Ref 1 and 2 . Fig. 2 Full...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
... Abstract A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047621
EISBN: 978-1-62708-229-7
..., and flange and more skillful welding techniques to avoid undercutting and unfused interfaces. Arc welding Combustion chamber Flanges Gas turbine engines Pipe fitting Undercuts Welding defects Inconel 718 (Nickel-base superalloy) UNS N07718 Fatigue fracture Joining-related failures...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047636
EISBN: 978-1-62708-217-4
... and 1 year. Two subassemblies were returned to the laboratory for determination of cause of failure. In one ( Fig. 1a ), the threaded boss had separated from the elbow at the weld made with the gas tungsten arc process using aluminum alloy 4043 filler metal. In the second, the failure...
Image
Published: 01 January 2002
Fig. 20 Section through an automatic gas tungsten arc weld containing voids caused by incomplete fusion. (a) Base metal at left is Incoloy 800 nickel alloy, that at right is 2.25Cr-1.0Mo alloy steel. Filler metal was ERNiCr-3, used with cold wire feed. Macrograph. 1×. (b) Micrograph More