Skip Nav Destination
Close Modal
By
Lisa Swartz, John Newman
By
Daniel P. Dennies, S. Lampman
By
Ockert J. Van Der Schijff, Noah Budiansky, Ronald M. Latanision
By
Wendy L. Weiss
By
Burak Akyuz, Don McKay
By
Sya Ensha, Paul West, Sachin Attavar
By
L. Scott Chumbley, Larry D. Hanke
By
L.S. Chumbley, Larry D. Hanke
By
Sarah Jane Hahn, Jimmy D. Wiser
By
Ralph D. Bowman
By
Donald E. Duvall
By
Robert B. Pond, Jr., David A. Shifler
By
Donald E. Duvall
By
Jose M. Perez, Jr., Jeffrey Hinkley
Search Results for
gas atomization
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 117
Search Results for gas atomization
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Chemical Characterization of Surfaces
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... to the transfer of energy from the argon atoms results in limited chemical-state information during profiling. This is especially true in polymer depth profiling, where the chemical makeup of organics quickly degrades during monatomic ion bombardment. The addition of the inert gas cluster ion beam to XPS...
Abstract
This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important attributes are listed for preliminary insight into the strengths and limitations of these techniques for chemical characterization of surfaces. The article describes the basic theory behind each of the different techniques, the types of data produced from each, and some typical applications. Also discussed are the different types of samples that can be analyzed and the special sample-handling procedures that must be implemented when preparing to do failure analysis using these surface-sensitive techniques. Data obtained from different material defects are presented for each of the techniques. The examples presented highlight the typical data sets and strengths of each technique.
Book Chapter
Failures Related to Metal Additive Manufacturing
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... are the common powder-bed AM techniques. Most metal powders used for AM processing are produced using water, plasma, and gas atomization. The different atomization techniques produce different powder characteristics, which can enhance or diminish AM processing. Additive manufacturing benefits from homogeneous...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Book Chapter
Hydrogen Damage and Embrittlement
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... molecular hydrogen (H 2 ). This problem is frequently encountered after steel processing and welding; it has been termed flaking or fisheyes. Atomic hydrogen can also react with a foreign element in the matrix to form a gas. A principal example is the reaction with carbon in low-alloy steels to form methane...
Abstract
This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article focuses on the types of hydrogen embrittlement that occur in all the major commercial metal and alloy systems, including stainless steels, nickel-base alloys, aluminum and aluminum alloys, titanium and titanium alloys, copper and copper alloys, and transition and refractory metals. The specific types of hydrogen embrittlement discussed include internal reversible hydrogen embrittlement, hydrogen environment embrittlement, and hydrogen reaction embrittlement. The article describes preservice and early-service fractures of commodity-grade steel components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also reviewed.
Book Chapter
Hydrogen Damage and Embrittlement
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... ). This problem is frequently encountered after steel processing and welding; it has been termed flaking or fisheyes. Atomic hydrogen can also react with a foreign element in the matrix to form a gas. A principal example is the reaction with carbon in low-alloy steels to form methane (CH 4 ) bubbles. Another...
Abstract
Hydrogen damage is a term used to designate a number of processes in metals by which the load-carrying capacity of the metal is reduced due to the presence of hydrogen. This article introduces the general forms of hydrogen damage and provides an overview of the different types of hydrogen damage in all the major commercial alloy systems. It covers the broader topic of hydrogen damage, which can be quite complex and technical in nature. The article focuses on failure analysis where hydrogen embrittlement of a steel component is suspected. It provides practical advice for the failure analysis practitioner or for someone who is contemplating procurement of a cost-effective failure analysis of commodity-grade components suspected of hydrogen embrittlement. Some prevention strategies for design and manufacturing problem-induced hydrogen embrittlement are also provided.
Book Chapter
Hydrogen Damage in a Waterwall Boiler Tube Section
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001739
EISBN: 978-1-62708-215-0
... molecular hydrogen nor methane is capable of diffusing through steel, so the gases accumulate, primarily at the grain boundaries. Eventually, gas pressures cause separation of the metal at its grain boundaries, producing discontinuous intergranular separation (fissures). As fissures accumulate, tube...
Abstract
The rear wall tube section of a boiler that had been in service for approximately 38 years was removed and examined. Visual examination of the tube revealed a small bulge with a through-wall crack. Metallography showed that the microstructure of the bulged area consisted of a few partially decarburized pearlite colonies in a ferrite matrix. The microstructure remote from the bulged area consisted of pearlite in a ferrite matrix. EDS analysis of internal deposits on the tube detected a major amount of iron, plus trace amounts of other elements. The evidence indicated that the bulge and crack in the tube resulted from hydrogen damage. Examination of the remaining water circuit boiler tubing using nondestructive techniques and elimination of any heavy deposit buildup was recommended.
Book Chapter
An Example of Blistering Due to Hydrogen Occlusion
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001454
EISBN: 978-1-62708-220-4
.... Some of the blisters were pierced by drilling a hole in the center and at the same time applying a small flame. In several cases combustion of the escaping gas caused minor explosions, a result characteristic of hydrogen. Etching showed the material to be a low-carbon steel in the partly spheroidized...
Abstract
The interior of a cylindrical tank used for the road transport of concentrated sulfuric acid revealed severe blistering of the plates, mainly over the crown and more particularly on the first ring. The tank, made in 1958, was of welded construction, the material being mild steel plate. Some of the blisters were pierced by drilling a hole in the center and at the same time applying a small flame. In several cases combustion of the escaping gas caused minor explosions, a result characteristic of hydrogen. Etching showed the material to be a low-carbon steel in the partly spheroidized condition. There was no evidence of cracking of the material in the region of the blisters and bend tests demonstrated it possessed satisfactory ductility. The primary cause of the blistering was ascribed to the presence of discontinuities within the plate. This provided cavities in which the hydrogen was able to accumulate and build up pressure. Had the material been free from discontinuities of appreciable size, the blistering would not have occurred.
Book Chapter
Quantitative Chemical Analysis of Metals in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Book Chapter
Surface Examination and Analysis of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
... materials is to employ variable-pressure SEM (VP-SEM) ( Ref 2 – 4 ). For this purpose, VP-SEM instruments operate with a specimen chamber filled with enough inert gas or vapor molecules at a pressure of ~10 to 2500 Pa to be ionized by the electron beam and neutralize charging. A valve system is designed...
Abstract
This article discusses the operating principles, advantages, and limitations of scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy that are used to analyze the surface chemistry of plastics.
Book Chapter
Scanning Electron Microscopy for Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
.... In this type of microscope, the pressure in the sample chamber is raised to a value on the order of 10 to 250 Pa (0.1 to 2 torr). Interaction of the electron beam with gas molecules in the region where the beam strikes the sample effectively creates a positively charged “cloud” of ions above the surface...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
..., when excessive atmospheric or handling contamination obscures much of the underlying surface of interest, inert gas sputtering can be employed to remove at least some of the obstructing contamination layer. Care must be taken to prevent sputter removing too much of the sample, or the surface...
Abstract
This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each of these techniques, the types of data produced from each, and some typical applications. The article explains the strengths of AES, XPS, and TOF-SIMS based on data obtained from the surface of a slightly corroded stainless steel sheet.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... low- or variable-pressure microscopes. In this type of microscope, the pressure in the sample chamber is raised to a value on the order of 0.1 to 1 torr. Interaction of the electron beam with gas molecules in the region where the beam strikes the sample effectively creates a positively charged “cloud...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Book Chapter
Hydrogen-Stress Cracking of Type 410 Stainless Steel Splice Case Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006899
EISBN: 978-1-62708-225-9
... exceed 70 N · m (600 in. · lb). In flooded manholes, the galvanic-corrosion reaction between zinc (galvanizing) and stainless steel can generate hydrogen at the stainless steel cathode. The rate at which absorbed hydrogen on the cathode combines to form H 2 gas is affected by the catalytic properties...
Abstract
Type 410 stainless steel bolts were used to hold together galvanized gray cast iron splice case halves. Before installation, the bolts were treated with molybdenum disulfide (MoS 2 ) antiseize compound. Several failures of splice case bolts were discovered in flooded manholes after they were in service for three to four months. Laboratory experiments were conducted to determine if the failure mode was hydrogen-stress cracking, if sulfides accelerate the failure, if heat treatment can improve the resistance against this failure mode, and if the type 305 austenitic stainless steel would serve as a replacement material. Based on test results, the solution to the hydrogen-stress cracking problem consisted of changing the bolt from type 410 to 305 stainless steel, eliminating use of MoS2, and limiting the torque to 60 N·m (540 in.·lb).
Book Chapter
X-Ray Spectroscopy in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
... in the SEM chamber. However, the greater gas pressure in the chamber also causes scattering of the electron beam prior to striking the sample surface. Thus, in the variable-pressure mode, the area of beam interaction can be much larger than expected for high-vacuum conditions, as shown by the Monte Carlo...
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Book Chapter
Hydrogen Damage of Waterwall Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001277
EISBN: 978-1-62708-215-0
..., hydrogen is generated during rapid corrosion of the inner diameter surface. Atomic hydrogen can diffuse into the metal and combine with carbon from iron carbides to form methane, or with other hydrogen atoms to form molecular hydrogen. These large gas molecules become trapped and produce very high...
Abstract
Waterwall tube failure samples removed from a coal- and oil-fired boiler in service for 12 years exhibited localized underdeposit corrosion and hydrogen damage. EDS and XRD revealed that bulk internal deposits collected from the tubes contained metallic copper which can accelerate corrosion through galvanic effects and can promote hydrogen damage. Ultrasonic testing was recommended to locate tubes with severe gouging and corrosion, which are suspect locations for hydrogen damage. The source of the copper should be identified and future chemical cleaning of the boiler should address its presence in the waterwall tubes.
Book Chapter
Embrittlement of a 76 mm (3 in.) Stainless Steel Pipe and Liner From a Hydrogen Plant Quench Pot Vessel
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001043
EISBN: 978-1-62708-214-3
... Abstract A 76 mm (3 in.) type 304 stainless steel tube that was used as a heat shield and water nozzle support in a hydrogen gas plant quench pot failed in a brittle manner. Visual examination of a sample from the failed tube showed that one lip of the section was eroded from service failure...
Abstract
A 76 mm (3 in.) type 304 stainless steel tube that was used as a heat shield and water nozzle support in a hydrogen gas plant quench pot failed in a brittle manner. Visual examination of a sample from the failed tube showed that one lip of the section was eroded from service failure, whereas the opposite side exhibited a planar-type fracture. Sections were removed from the eroded area and from the opposite lip for microscopic studies and chemical analysis. The eroded edges exhibited river bed ditching, indicative of thermal fatigue. Microstructural analysis showed massive carbide formations in a martensite matrix and outlining of prior-austenite grains by a network of fine, white lines. These features indicated that the material had been transformed by carburization by the impinging gas. The outer surface exhibited a heavy scale deposit and numerous cracks that originated at the surface of the tube. The cracks were covered with scale, indicating that thermal fatigue (heat cracking) had occurred. Chemical analysis confirmed that the original material was type 304 stainless steel that had been through-carburized by the formation of an endothermic gas mixture. It was recommended that plant startup and shutdown procedures be modified to reduce or eliminate the presence of the carburizing gas mixture.
Book Chapter
Effect of Environment on the Performance of Plastics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... as with PVC. With respect to identifying adsorbed chemicals in plastics, since the chemical is adsorbed, it can usually be extracted in some way and identified. In some cases, simply heating the plastic will drive off the chemical, which can be collected and fed into a gas chromatograph (GC) or a GC/mass...
Abstract
The article commences with an overview of short-term and long-term mechanical properties of polymeric materials. It discusses plasticization, solvation, and swelling in rubber products. The article further describes environmental stress cracking and degradation of polymers. It illustrates how surface degradation of a plain strain tension specimen alters the ductile brittle transition in polyethylene creep rupture. The article concludes with information on the effects of temperature on polymer performance.
Book Chapter
High-Temperature Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
... Abstract High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Book Chapter
Effect of Environment on the Performance of Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006867
EISBN: 978-1-62708-395-9
... will drive out the chemical, which can be collected and fed into a gas chromatograph (GC) or a GC/mass spectrometry (GC/MS) system for analysis. Sometimes extraction using a second chemical solvent is necessary, one that is a better solvent for the plasticizer than the polymer is. The extract can...
Abstract
With any polymeric material, chemical exposure may have one or more different effects. Some chemicals act as plasticizers, changing the polymer from one that is hard, stiff, and brittle to one which is softer, more flexible, and sometimes tougher. Often these chemicals can dissolve the polymer if they are present in large enough quantity and if the polymer is not crosslinked. Other chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC reagent. Finally, there are some chemicals that cause actual degradation of the polymer, breaking the macromolecular chains, reducing molecular weight, and diminishing polymer properties as a result. This article examines each of these effects. The discussion also covers the effects of surface embrittlement and temperature on polymer performance.
Book Chapter
Effects of Composition, Processing, and Structure on Properties of Engineering Plastics
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
... at 25 °C (77 °F) °C °F 1 30 –169 (a) –272 (a) Gas 6 170 –12 (a) 10 (a) Liquid 35 1,000 37 99 Grease 140 4,000 93 199 Wax 250 7,000 98 208 Hard wax 430 12,000 104 219 Plastic 750 21,000 110 230 Plastic 1,350 38,000 112 234 Plastic...
Abstract
This article provides practical information and data on property development in engineering plastics. It discusses the effects of composition on submolecular and higher-order structure and the influence of plasticizers, additives, and blowing agents. It examines stress-strain curves corresponding to soft-and-weak, soft-and-tough, hard-and-brittle, and hard-and-tough plastics and temperature-modulus plots representative of polymers with different degrees of crystallinity, cross-linking, and polarity. It explains how viscosity varies with shear rate in polymer melts and how processes align with various regions of the viscosity curve. It discusses the concept of shear sensitivity, the nature of viscoelastic properties, and the electrical, chemical, and optical properties of different plastics. It also reviews plastic processing operations, including extrusion, injection molding, and thermoforming, and addresses related considerations such as melt viscosity and melt strength, crystallization, orientation, die swell, melt fracture, shrinkage, molded-in stress, and polymer degradation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... by gas carburizing, but several studies have documented bending fatigue crack initiation by IG fracture even in the absence of surface oxidation ( Ref 16 ). It may also be facilitated by the rather large prior austenite grain size resulting from the carburizing cycle. Not only do the fatigue cracks...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
1