1-20 of 88 Search Results for

galvanic protection

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046874
EISBN: 978-1-62708-229-7
.... Both the zinc coating, which provided galvanic protection for the spring, and the open-top valve construction, which allowed free circulation of air with a reduced concentration of moisture, were considered instrumental in eliminating corrosion fatigue of these valve springs. Alternatively, the valve...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001745
EISBN: 978-1-62708-217-4
... Abstract A 2000-T6 aluminum alloy bracket failed in a coastal environment because corrosive chlorides got between the bracket and attachment bolt. The material used for the part was susceptible to stress corrosion under the service conditions. Cracking may have been aggravated by galvanic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046535
EISBN: 978-1-62708-234-1
... to provide cathodic protection. Chemical processing equipment Pipelines Underground corrosion 304L UNS S30403 Galvanic corrosion One of five underground drain lines intended to carry a highly acidic effluent from a chemical-processing plant to distant holding tanks failed in just a few months...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... in protective coatings may lead to severe galvanic corrosion in the localized region of the coating imperfection. It is extremely dangerous to coat the anodic member of a couple because this may only reduce its active area, which severely accelerates the attack at these holidays in the otherwise protective...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... cathodic areas coupled to small anodic areas will aggravate galvanic corrosion and cause severe dissolution of the more active metal. The reverse situation—large anodic areas coupled to small cathodic areas—produces very little galvanic current. This is why imperfections or holidays in protective coatings...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... with the observations made at Cape Kennedy. The grease was an insulator between the dissimilar metal couples, and it eliminated the galvanic cell reaction. Even bolts heat treated to maximum hardness did not fail as long as the grease remained intact. Nickel-cadmium plating gave inadequate protection because...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... film or protective barrier that is stable over a considerable range of oxidizing power and is eventually destroyed in strong oxidizing solutions. Under conditions in which the surface film is stable, the anodic reaction is stifled, and the metal surface is protected from corrosion. For example...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001125
EISBN: 978-1-62708-214-3
... performance. The steel cable was 0.67% C hot-drawn plain carbon steel, also galvanized for corrosion protection. Only the failed specimen was available for examination. At a later date, other connectors removed from the line became available for examination and were found to be uncorroded. Figure 2...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003567
EISBN: 978-1-62708-180-1
... pipelines, pumps, elbows, and other equipment ( Ref 36 ). However, the length of the protection must be kept sufficiently short to prevent overprotection and subsequent hydrogen blistering of the protected surface. The throwing power of cathodic protection, either by impressed current or galvanic anodes...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... accelerated corrosion, while the other is protected. This phenomenon is known as galvanic corrosion ( Ref 22 ). The galvanic effect is also applicable to adjacent phases or domains having different activities. Wear generally produces heterogeneously strained regions. The strained and unstrained or less...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency particulate air filters. The failure analysis investigation concluded...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001695
EISBN: 978-1-62708-229-7
... rule, the protective oxide film is very stable in aqueous solutions in the pH range of 4.0 to 8.5. Galvanic corrosion occurs throughout most fuel storage basins. It occurs when a metal or alloy is electrically coupled to another metal, usually dissimilar, in the same electrolyte. During galvanic...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091384
EISBN: 978-1-62708-219-8
... or coated and lined steel pipe, generally not susceptible to graphitic corrosion, were suggested as suitable replacement materials, and cathodic protection was also considered as a possibility. Galvanic corrosion Graphitization Piping Gray iron Dealloying/selective leaching A 25.4 cm (10...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001277
EISBN: 978-1-62708-215-0
... boiler in service for 12 years exhibited localized underdeposit corrosion and hydrogen damage. EDS and XRD revealed that bulk internal deposits collected from the tubes contained metallic copper which can accelerate corrosion through galvanic effects and can promote hydrogen damage. Ultrasonic testing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001570
EISBN: 978-1-62708-220-4
... the exchanger tubes to impose load on seal welds and the shell side cooling water entered the crevice between the tubesheet and the tubes. The cooling water in the crevice caused galvanic reaction and embrittlement of seal welds. Brittle crack opening and crack propagation in seal welds occurred due...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091727
EISBN: 978-1-62708-217-4
... of the protective oxide film. It was learned that minor changes in the testing procedures could inhibit or accelerate the reaction. Recommendations included replacing the methanol with a suitable alternate fluid. Isopropyl alcohol was chosen after considerable testing. This incident further resulted...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001768
EISBN: 978-1-62708-241-9
... in its transverse section and hence the whole of its cross-section was exposed to the etchant. Therefore, it was not possible that the galvanized layer would have protected the adjacent layers and made it appear white. The occurrence of white martensite layer on the surfaces of prematurely failed steel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001691
EISBN: 978-1-62708-234-1
... be electrically insulated from the stainless steel system to minimize galvanic corrosion [ 3 ]. The DI cooling water, the filtration, and the DI heating water should all be improved. The protective oxide layer on the 6063 aluminum that was formed in service can be seen in Figure 12 . Fig. 12 Uniform...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... of the steel near the galvanized surfaces and adjacent to cracks were more lightly etched than other areas, and Fe–Zn intermetallic compounds were present at the interfaces between the zinc and the steel. The lighter etched regions were attributed to the greater galvanic protection of the steel closer...