Skip Nav Destination
Close Modal
Search Results for
fusion bonding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 48 Search Results for
fusion bonding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001612
EISBN: 978-1-62708-218-1
... that the premature failure of the fan was due to inadequate bonding between the sheets at the weld nugget. The fracture was initiated from the nugget-plate interface. The inadequate penetration and lack of fusion between the steel sheets during resistance spot welding led to poor weld strength and the fracture...
Abstract
The fan used to cool a diesel engine fractured catastrophically after approximately 100 h of operation. The fan failed at a spider, which was resistance spot welded to a shim placed between two circular spiders of 3 mm thickness. The detailed analysis of the fracture indicated that the premature failure of the fan was due to inadequate bonding between the sheets at the weld nugget. The fracture was initiated from the nugget-plate interface. The inadequate penetration and lack of fusion between the steel sheets during resistance spot welding led to poor weld strength and the fracture during operation. The propensity to crack initiation and failure was accentuated by improper cleaning of the surfaces prior to welding and to inadequate nugget-to-sheet edge distance.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... parts. Powder-Bed Fusion and Directed-Energy Deposition Metal Additive Manufacturing The PBF and DED additive manufacturing processes rely on melting and solidification of the feedstock material (powder or wire) to form a metallurgical bond with a substrate (in the case of DED...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001054
EISBN: 978-1-62708-214-3
... Fig. 1 Silver soild-state bonding process. Fig. 2 Bend test methods and fixtures. Fig. 3 SEM fractograph of specimen bend tested at 50% load in dry air; time to failure, 24 days. Large arrow indicates area of maximum tensile stress. The segment is from the uranium side...
Abstract
Silver solid-state bonded components containing uranium failed under zero or low applied load several years after manufacture. The final operation in their manufacture was a proof loading that applied a sustained tensile stress to the bond, which all components passed. The components comprised circular cylinders fabricated by plating a thin layer of silver on each of the contact surfaces (uranium and stainless steel) and pressing the parts together at elevated temperature to solid-state bond the two silver surfaces. The manufacturing process produced a high level of residual stress at the bond. The failures appeared to be predominantly located between the silver layer and the uranium substrate. Normal fracture location of specimens taken from similar components was at the silver/silver bond interface. Laboratory testing revealed that the uranium/silver joint was susceptible to premature failure by stress-corrosion cracking under sustained loading if the atmosphere was saturated with water vapor.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047720
EISBN: 978-1-62708-217-4
..., following the edge of the weld fusion zone. Fig. 1 Sections through a fractured laser beam weld joining a Hastelloy X cooling tube to a base plug of the same material. The weld fractured by stress rupture from tensile overload, which resulted from stress concentrations at a notch left by inadequate...
Abstract
Airfoil-shape impingement cooling tubes were fabricated of 0.25 mm (0.010 in.) thick Hastelloy X sheet stock, then pulse-laser-beam butt welded to cast Hastelloy X base plugs. Each weldment was then inserted through the base of a hollow cast turbine blade for a jet engine. The weldments were finally secured to the bases of the turbine blades by a brazing operation. One of the laser beam attachment welds broke after a 28-h engine test run. Exposure of the fracture surface for study under the electron microscope revealed the joint had broken in stress rupture. Failure was caused by tensile overload from stress concentration at the root of the laser beam weld, which was caused by the sharp notch created by the lack of full weld penetration. Radiographic inspection of all cooling-tube weldments was made mandatory, with rejection stipulated for joints containing subsurface weld-root notches. In addition, all turbine blades containing cooling-tube weldments were reprocessed by back-brazing. Back brazed turbine blades were reinstalled in the engine and withstood the full 150-h model test run without incident.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
... create areas of incomplete fusion or brittle regions along the bond line that are susceptible to crack initiation and propagation. Figure 5 shows an example of a lap weld with oxides and areas of incomplete fusion along the bond line. Fig. 5 Lap seam weld with oxides and areas of incomplete...
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001430
EISBN: 978-1-62708-236-5
... of fusion, gross slag inclusions or porosity is covered up and only detectable by NDT techniques. Earlier volumes of these reports have included many instances of failure of shafts and other components following the use of welding to restore worn regions, effect modifications or correct errors...
Abstract
An intermediate shaft (3 in. diam), part of a camshaft drive on a large diesel engine, broke after two weeks of service. Failure occurred at the end of the taper portion adjacent to the screwed thread. The irregular saw-tooth form of fracture was characteristic of failure from torsional fatigue. A second shaft carried as spare gear was fitted and failure took place in a similar manner in about the same period of time. Examination revealed that the tapered portion of the Fe-0.6C carbon steel shaft had been built up by welding prior to final machining. A detailed check by the engine-builder established that the manufacture of these two shafts had been subcontracted. It was ascertained that the taper portions had been machined to an incorrect angle and then subsequently built-up and remachined to the correct taper. The reduction in fatigue endurance following welding was due to heat-affected zone cracking, residual stresses, the lower fatigue strength of the weld deposited metal, and weld defects.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
...Practical information derived from polymer analysis methods Table 1 Practical information derived from polymer analysis methods Test method Properties measured Use in polymer failure analysis Fourier transform infrared spectroscopy (FTIR) Molecular bond structure Material...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006808
EISBN: 978-1-62708-329-4
... of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness...
Abstract
This article describes some of the welding discontinuities and flaws characterized by nondestructive examinations. It focuses on nondestructive inspection methods used in the welding industry. The sources of weld discontinuities and defects as they relate to service failures or rejection in new construction inspection are also discussed. The article discusses the types of base metal cracks and metallurgical weld cracking. The article discusses the processes involved in the analysis of in-service weld failures. It briefly reviews the general types of process-related discontinuities of arc welds. Mechanical and environmental failure origins related to other types of welding processes are also described. The article explains the cause and effects of process-related discontinuities including weld porosity, inclusions, incomplete fusion, and incomplete penetration. Different fitness-for-service assessment methodologies for calculating allowable or critical flaw sizes are also discussed.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... include: Underbead cracks Gas porosity Inclusions—slag, oxides, or tungsten metal Incomplete fusion Inadequate penetration Solidification cracks, liquation cracks Failure to meet strength, ductility, or toughness requirements is another cause for rejection of weldments. Details...
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
... of the material evaluated. Fourier transform infrared spectroscopy uses infrared energy to produce vibrations within the molecular bonds that constitute the material evaluated. Vibrational states of varying energy levels exist in molecules. Transition from one vibrational state to another is related to absorption...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
... of slags (of the same nature as the liquid phase formed in the refractories). The early book by Muan and Osborn ( Ref 2 ) is a reading requirement for new researchers in this field, as are the reviews by Kraner ( Ref 3 ) on phase diagrams for fired refractories and by Alper et al. ( Ref 4 ), on fusion-cast...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... by fusion welding ( Ref 18 ) or explosive bonding ( Ref 19 ) to protect regions subject to liquid impact. In particular, the effectiveness of cobalt-containing weld overlays, such as Stellite 6 (ST-6), Stellite 21 (ST-21), and the IRECA series of stainless steels developed by Hydro Quebec ( Ref 20 ), has...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... plate edges. The weld is made using forging rolls that form a low-angle weld through the thickness. Causes of failure in this type of weld are oxides on the bond line and lack of fusion due to too low a temperature or too little upsetting pressure. These defects reduce the effective thickness...
Abstract
This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also reviewed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
.... The cracks were evident within the base metal, at the repair weld fusion lines, and within the weld metal. Figure 6(a) shows the opened crack features in an area where a weld and remaining casting imperfection were apparent. The macroscopic fracture features differed substantially between the base metal...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
... superalloy possesses a great corrosion resistance [ 1 ], the high production cost has restricted the individual application of this alloy. As a result, cladding procedure is applied to cover more economical materials with Inconel superalloy. Though fusion welding and cladding processes are inexpensive...
Abstract
Explosive cladding is a viable method for cladding different materials together, but the complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. To better understand the relationship between impact energy and interfacial shear, investigators conducted an extensive study on the shear strength of explosively cladded Inconel 625 and plain carbon steel samples. They found that by increasing impact energy, the adhesion strength of the resulting cladding can be improved. Beyond a certain point, however, additional impact energy reduces shear strength significantly, causing the cladding process to fail. The findings reveal the decisive role of plastic strain localization and the associated development of microcracks in cladding failures. An attempt is thus made to determine the optimum cladding parameters for the materials of interest.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... within the base metal at the repair weld fusion lines and within the weld metal. Figure 6(a) shows the opened crack features in an area where a weld and remaining casting imperfection were apparent. The macroscopic fracture features differed substantially between the base metal and the welds. Some...
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
... property and environmental stress-cracking (ESC) resistance Property Improved ESC resistance Amorphous or semicrystalline Semicrystalline Crystallinity Varies Molecular weight Higher Molecular weight distribution Narrow Polymer molecular fusion/entanglement More Unfilled...
Abstract
While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer with a better understanding of how to evaluate and prevent it. It then presents factors that affect and contribute to the susceptibility of plastic to ESC: material factors, chemical factors, stress, and environmental factors. The article includes the collection of background information to understand the circumstances surrounding the failure, a fractographic evaluation to assess the cracking, and analytical testing to evaluate the material, design, manufacturing, and environmental factors.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... can be satisfactorily extruded. Another example of a difficult-to-accommodate manufacturing condition versus the selected material is a brazed extended heat-transfer surface featuring aluminum alloy brazing sheet fin stock bonded to aluminized stainless steel. The optimal conditions require bonding...
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... can be used to detect internal laws in most engineering metals and alloys. Bonds produced by welding, brazing, soldering, and adhesive bonding can also be ultrasonically examined. In-line techniques have been developed for monitoring and classifying materials as acceptable, salvageable, or scrap...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006916
EISBN: 978-1-62708-395-9
... their optimum properties and avoid issues such as weak knit lines, flow marks, or poor additive mixing. The mechanical properties of PVC products depend on the extent of fusion the material has undergone during processing. Many pipe and fitting failures have been traced to a poorly fused or under-fused PVC...
Abstract
This article focuses on manufacturing-related failures of injection-molded plastic parts, although the concepts apply to all plastic manufacturing processes It provides detailed examples of failures due to improper material handling, drying, mixing of additives, and molecular packing and orientation. It also presents examples of failures stemming from material degradation improper use of metal inserts, weak weld lines, insufficient curing of thermosets, and inadequate mixing and impregnation in the case of thermoset composites.
1