Skip Nav Destination
Close Modal
Search Results for
fretting corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 76 Search Results for
fretting corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048420
EISBN: 978-1-62708-226-6
... Abstract Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head was studied. The attack on the 316LR stainless steel was only shallow. Mechanical grinding and polishing structures were exhibited...
Abstract
Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head was studied. The attack on the 316LR stainless steel was only shallow. Mechanical grinding and polishing structures were exhibited by a large portion of the contact area. Fine corrosion pits in the periphery were observed and intense mechanical material transfer that can take place during fretting was revealed. Smearing of material layers over each other during wear was observed and attack by pitting corrosion was interpreted to be possible.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001903
EISBN: 978-1-62708-217-4
... Abstract Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits...
Abstract
Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits in a failed control rotor spar tube assembly made of cadmium-plated AISI 4130 Cr-Mo alloy steel. Inadequate design was responsible for the failure. A lower tine of the main rotor blade cuff failed in fatigue. The rotor blade cuff was forged of 2014-T6 aluminum alloy. Initial stages of crack growth displayed features typical of low stress intensity fatigue of aluminum alloys. The fatigue resulted from abnormal fretting owing to inadequate torquing of the main retention bolts. Aircraft maintenance engineers and owners were advised to adhere to specifications when torquing this joint.
Image
in Screw Hole With Fretting and Fretting Corrosion of a Type 316LR Stainless Steel Plate
> ASM Failure Analysis Case Histories: Medical and Biomedical Devices
Published: 01 June 2019
Fig. 1 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate hole showing mechanical and pitting corrosion attack. 15x. (b) Higher-magnification view of shallow
More
Image
Published: 01 January 2002
Fig. 35 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate hole showing mechanical and pitting corrosion attack. 15×. (b) Higher-magnification view of shallow
More
Image
in Fretting of Freon-Compressor Shaft because of a Loose Bearing
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 1 Freon-compressor shaft of 4140 steel that failed by fretting corrosion in the bearing area (Example 2). (a) Shaft and bearing assembly. (b) Failed region of shaft, at 2×, showing disturbed metal and partly closed keyway. (c) Shaft side of bearing inner ring, at 3×, showing pitting
More
Image
in A Survey of the Causes of Failure of Rolling Bearings
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Image
Published: 01 January 2002
Fig. 40 Freon-compressor shaft of 4140 steel that failed by fretting corrosion in the bearing area (Example 2). (a) Shaft and bearing assembly. (b) Failed region of shaft, at 2×, showing disturbed metal and partly closed keyway. (c) Shaft side of bearing inner ring, at 3×, showing pitting
More
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... cycles Fig. 34 Typical delamination in the fretted region produced by metal-to-metal contact Fig. 35 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate...
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations...
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... Abstract Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001745
EISBN: 978-1-62708-217-4
..., a 2000-T6 aluminum alloy swivel fitting experienced intergranular corrosion fracture as the result of stress-accelerated corrosion. Corrosion began because of a loose fit between the aluminum swivel fitting and steel tube assembly, which caused fretting. Inadequate maintenance and/or abnormal service...
Abstract
A 2000-T6 aluminum alloy bracket failed in a coastal environment because corrosive chlorides got between the bracket and attachment bolt. The material used for the part was susceptible to stress corrosion under the service conditions. Cracking may have been aggravated by galvanic action between aluminum alloy bracket and steel bolt. To preclude or minimize recurrences, fittings in service should be inspected periodically by dye penetrant for signs of cracking on the end face and within the fitting hole and protected with a suitable coating to exclude damaging chlorides. Also, a 2000-T6 aluminum alloy swivel fitting experienced intergranular corrosion fracture as the result of stress-accelerated corrosion. Corrosion began because of a loose fit between the aluminum swivel fitting and steel tube assembly, which caused fretting. Inadequate maintenance and/or abnormal service operation may have loosened the fitting.
Image
in Fretting and Corrosion in Aircraft Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 3 Corroded surface of fracture shown in Fig. 1 . Note severe fretting corrosion products (red-brown “mud” appearance) at and near two origins (O 1 and O 2 ) at the bottom outboard attachment bolt hole. Inset shows close-up of O 2 depicting “beach marks”.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0091897
EISBN: 978-1-62708-236-5
... occurred, requiring the collar, spacer sleeve, seal, roller bearing, and lockwasher to be replaced. Fig. 1 Freon-compressor shaft of 4140 steel that failed by fretting corrosion in the bearing area (Example 2). (a) Shaft and bearing assembly. (b) Failed region of shaft, at 2×, showing disturbed...
Abstract
The shaft-and-bearing assembly in a freon compressor was subjected to severe pounding and vibration after six years of service. After about one year of service, the compressor had been shut down to replace a bearing seal. One month before the shaft failed, a second seal failure occurred, requiring the collar, spacer sleeve, seal, roller bearing, and lock washer to be replaced. The shaft was made of 4140 steel, heat treated to a hardness of 20 to 26 HRC. The seal, bearing, and lock washer were commercial components. Investigation (visual inspection, 4.5x images, x-ray diffraction, hardness testing, and microscopic exam) supported the conclusion that shaft failure was initiated by fretting between the bearing race and the bearing surface on the shaft because of improper bearing installation. Once clearance was established between the bearing and the shaft, the shaft began pounding on the inner bearing race, causing final failure of the shaft surface. Recommendations included proper fitting of the shaft and bearing race to preventing movement of the bearing on the shaft. Also, the lock washer and locknut must be installed properly.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
.... Implants can undergo surface attack by fretting, fretting corrosion, or wear. These types of attack can be relatively mild; they often occur only on the microscopic level, do not interfere with the functioning of the implant or the healing of the bone, and do not require reoperation. On prosthetic devices...
Abstract
This article commences with a description of the prosthetic devices and implants used for internal fixation. It describes the complications related to implants and provides a list of major standards for orthopedic implant materials. The article illustrates the body environment and its interactions with implants. The considerations for designing internal fixation devices are also described. The article analyzes failed internal fixation devices by explaining the failures of implants and prosthetic devices due to implant deficiencies, mechanical or biomechanical conditions, and degradation. Finally, the article discusses the fatigue properties of implant materials and the fractures of total hip joint prostheses.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048407
EISBN: 978-1-62708-226-6
... characteristic that fretting corrosion occurred at the screw/plate interface at screw hole No. 7. This screw was closest to the bone defect and was secured only in one cortex. Compared to all the other screws, this one was the most likely to undergo relative motion. As outlined in the legend in Fig. 1...
Abstract
The plate used to treat a pseudarthrosis in the proximal femur was investigated for reasons of non-progress of healing. Fatigue cracks were revealed on the top surface of the small section of the plate at the fifth screw hole. The plate was found to be heavily loaded by comparison of intensity of these structures, compared to results of systematic crack-initiation experiments. It was revealed by fatigue bending tests that the fatigue life of plates with asymmetrically arranged holes is at least as long as for plates with holes situated in the center. Fatigue began at the large section only after a fatigue crack begins to propagate into the small plate section. A large secondary crack which had developed parallel to the main crack in the center of the surface was revealed. The fifth hole was situated at the transition between the supporting bone and the defect and hence stress concentration was revealed to be high.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006794
EISBN: 978-1-62708-295-2
... delamination and removal by wear. Corrosion enhances the wear attack. Wear of railway steel under repeated rolling contact suffers from such wear attack involving wear, fatigue, and corrosion. Perhaps the most encountered type of fatigue wear corrosion is fretting wear in a corrosive environment, termed...
Abstract
Corrosive wear is defined as surface damage caused by wear in a corrosive environment, involving combined attacks from wear and corrosion. This article begins with a discussion on several typical forms of corrosive wear encountered in industry, followed by a discussion on mechanisms for corrosive wear. Next, the article explains testing methods and characterization of corrosive wear. Various factors that influence corrosive wear are then covered. The article concludes with general guidelines for material selection against corrosive wear.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... as fatigue crack initiation sites, contributing to eventual fatigue fractures. Additionally, pitting can be associated with fretting (and possibly eventual fatigue), as discussed in the following section. Galvanic Corrosion Galvanic coupling caused by the contact between two dissimilar materials...
Abstract
Bearing in mind the three-legged stool approach of device design/manufacturing, patient factors, and surgical technique, this article aims to inform the failure analyst of the metallurgical and materials engineering aspects of a medical device failure investigation. It focuses on the device "failures" that include fracture, wear, and corrosion. The article first discusses failure modes of long-term orthopedic and cardiovascular implants. The article then focuses on short-term implants, typically bone screws and plates. Lastly, failure modes of surgical tools are discussed. The conclusion of this article presents several case studies illustrating the various failure modes discussed throughout.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048423
EISBN: 978-1-62708-226-6
... indicators of the presence of motion and loosening. In other investigated prostheses, flat fretting zones have also been found on other areas of the stem. On stainless steel prostheses, this wear appears occasionally as slight fretting corrosion attack. One may, however, distinguish wear that took place...
Abstract
The bone cement failed at the distal end of the prosthesis stem of femoral head prosthesis six months after implantation. A small indentation on the lateral contour of the stem was visible where the stem had broken. The degree of loosening (gap between the lateral stem contour and the bone or cement) and implant loading was revealed by the dislocation of fragments of the prosthesis. Secondary cracks that had originated at the lateral aspect of the stem were revealed by metallographic examination of a section parallel to the stem surface and perpendicular to the fracture surface of the distal fragment. Gas pores are apparent in the grain and at the grain boundaries were revealed by a transverse section. Fine parallel line structures that run diagonally through the fractograph may be slip traces were revealed by scanning electron microscopy. One of the cracks was revealed to have propagated through a larger gas pore by a ruptured gas pore. The stresses created through the fatigue process activated glide systems which served the formation of secondary cracks along glide planes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048421
EISBN: 978-1-62708-226-6
... of corrosion were observed in connection with fretting structures. Surgical implants Wear particles Titanium Fretting wear Figure 1(a) shows a portion of a titanium screw head with a lip of material that was transported by fretting at a plate-hole edge. A flat fretting zone is visible...
Abstract
Wear on a titanium screw head with a lip of material that that was transported by fretting at a plate-hole edge was studied. A flat fretting zone was visible on the screw surface over the material lip. A cellular wear structure containing wear debris was found. No morphological signs of corrosion were observed in connection with fretting structures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001468
EISBN: 978-1-62708-221-1
... concentration. The crank arms were, however, a press fit on to the shafts and the absence of fretting corrosion on the surfaces of the squared portion indicated that a satisfactory degree of fit had been obtained. It is known, however, that a press fit gives rise to a zone of stress concentration adjacent...
Abstract
In a shaft subjected to reversed torsional stresses, failure resulted from the gradual development of fatigue cracks from opposite sides of the shaft. These broke out from origins located adjacent to the fillets at the start of the square section. The remaining uncracked material which fractured at the time of the mishap was in the form of a narrow strip, situated slightly to one side of the center of the shaft. The material was a mild steel in the normalized or annealed condition, having a carbon content of approximately 0.3%. The cracking was characteristic of that resulting from torsional fatigue. Because it occurred on two different planes at 45 deg to the axis of the shaft it was due to reversals of torsional stress rather than fluctuations of unidirectional torque. Following this failure, the shafts of six other similar cranes were tested ultrasonically. Cracks to varying degree were found in all the shafts. Timely replacement was possible and the likelihood of serious accidents removed.
1