1-20 of 112 Search Results for

fretting

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048420
EISBN: 978-1-62708-226-6
... Abstract Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head was studied. The attack on the 316LR stainless steel was only shallow. Mechanical grinding and polishing structures were exhibited...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... Abstract This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... Abstract Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001621
EISBN: 978-1-62708-227-3
... Abstract A crankshaft flange from a marine diesel engine illustrated a less-common case of fretting-fatigue cracking. The crankshaft was from a main engine of a sea-going passenger/vehicle ferry. The afterface of the flange was bolted to the flange of a shaft driving the gearbox. Cracks...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048421
EISBN: 978-1-62708-226-6
... Abstract Wear on a titanium screw head with a lip of material that that was transported by fretting at a plate-hole edge was studied. A flat fretting zone was visible on the screw surface over the material lip. A cellular wear structure containing wear debris was found. No morphological signs...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0091893
EISBN: 978-1-62708-218-1
... steel strip. The inner ring, outer ring, and balls were austenitized at 845 deg C (about 1550 deg F), oil quenched, and tempered to a hardness of 60 to 64 HRC. Investigation (visual inspection) supported the conclusion that failure was caused by fretting due to vibration of the stationary vehicle...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001903
EISBN: 978-1-62708-217-4
... Abstract Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0091897
EISBN: 978-1-62708-236-5
..., hardness testing, and microscopic exam) supported the conclusion that shaft failure was initiated by fretting between the bearing race and the bearing surface on the shaft because of improper bearing installation. Once clearance was established between the bearing and the shaft, the shaft began pounding...
Image
Published: 01 June 2019
Fig. 1 Fretting and fretting corrosion at the contact area between the screw hole of a type 316LR stainless steel bone plate and the corresponding screw head. (a) Overview of wear on plate hole showing mechanical and pitting corrosion attack. 15x. (b) Higher-magnification view of shallow More
Image
Published: 01 June 2019
Fig. 3 Cross section of steel shaft, with fretting-fatigue cracks developing in or near the keyway but ignoring the stress concentration of the corner. Crack “A” initiated from one side of the keyway, as in Fig. 2 ; crack “B” originated from the cylindrical surface. More
Image
Published: 01 June 2019
Fig. 1 Automotive front-wheel bearing that failed by fretting of raceways on inner and outer 52100 steel rings. Dimensions given in inches More
Image
Published: 01 June 2019
Fig. 1 Freon-compressor shaft of 4140 steel that failed by fretting corrosion in the bearing area (Example 2). (a) Shaft and bearing assembly. (b) Failed region of shaft, at 2×, showing disturbed metal and partly closed keyway. (c) Shaft side of bearing inner ring, at 3×, showing pitting More
Image
Published: 01 June 2019
Fig. 1 Wear on head of titanium screw. (a) Material transport and fretting zone. (b) Close-up view of wear structures showing fine wear products. 120×. (c) Wear structures showing generation of small wear particles. 1200×. (d) Wear structures with additional fretting structures. 305× More
Image
Published: 01 June 2019
Fig. 5 Fretting corrosion on outer face. More
Image
Published: 01 June 2019
Fig. 1 Arrow indicates fretting in the cracked bracket. Material: 2000 series aluminum, T6 condition; R B 78–80. More
Image
Published: 01 June 2019
Fig. 3 Corroded surface of fracture shown in Fig. 1 . Note severe fretting corrosion products (red-brown “mud” appearance) at and near two origins (O 1 and O 2 ) at the bottom outboard attachment bolt hole. Inset shows close-up of O 2 depicting “beach marks”. More
Image
Published: 01 June 2019
Fig. 6 Severe fretting areas at and near failure ( Fig. 4 ) and on bolt (inset). More
Image
Published: 01 June 2019
Fig. 5 Brittle fracture in spring leg spread from fretting-induced fatigue zone (arrow) at the outboard side surface. Fatigue began at fretting marks due to loosened (or inadequately tightened) lower bolts, which attach the ski-wheel axle. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001620
EISBN: 978-1-62708-229-7
... revealed finely spaced striations on the crack surfaces, supporting a diagnosis of fatigue cracking. Crack initiation in the pulverizer shafts started as a result of fretting fatigue. Greater attention to lubrication was suggested, combined with asking the manufacturer to consider nitriding the splined...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001023
EISBN: 978-1-62708-214-3
... Fig. 1 Defective ATAR engine accessory angle drive splined shaft and gear assembly. The bevel gear (arrow) was free to rotate on the shaft. ∼.34×. Fig. 2 Accessory angle drive components: S, splined shaft; G, bevel gear, R, support ring, N, castellated nut. Note severe fretting wear...