Skip Nav Destination
Close Modal
By
David Arencón Osuna, Marcelo de Sousa Pais Antunes, Vera Cristina de Redondo Realinho, José Ignacio Velasco
Search Results for
fracture mechanics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 860 Search Results for
fracture mechanics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided. crack-growth simulation elastic-plastic fracture...
Abstract
This article describes concepts and tools that can be used by the failure analyst to understand and address deformation, cracking, or fracture after a stress-related failure has occurred. Issues related to the determination and use of stress are detailed. Stress is defined, and a procedure to deal with stress by determining maximum values through stress transformation is described. The article provides the stress analysis equations of typical component geometries and discusses some of the implications of the stress analysis relative to failure in components. It focuses on linear elastic fracture mechanics analysis, with some mention of elastic-plastic fracture mechanics analysis. The article describes the probabilistic aspects of fatigue and fracture. Information on crack-growth simulation of the material is also provided.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0046210
EISBN: 978-1-62708-235-8
...: Poor-quality material with low fracture and fatigue resistance Poor machining, which initiates cracks that propagate to failure by a fatigue mechanism in service Excessive stresses associated with abusive use or failure of other components in the system to operate according to design...
Abstract
Several crankshaft failures occurred in equipment that was being used in logging operations in subzero temperatures. Failure usually initiated at a cracked pin oil hole, and the failure origin was approximately 7.6 mm (0.3 in.) from the shaft surface. The holes were produced by gun drilling, giving rise to surface defects. The fracture surface was characteristic of fatigue in that it was flat, relatively shiny, and exhibited beach marks. The crack surface was at a 45 deg angle to the axis of the shaft, indicating dominant tensile stresses. The material was the French designation AFNOR 38CD4 (similar to AISI type 4140H) and was in the quenched-and-tempered condition, with a yield strength of about 760 MPa (110 ksi). It was treated to have compressive surface stresses, and the prior-austenite grain size was ASTM 8. Analysis (visual inspection, stress analyses, and macrographs) supported the conclusion that failure was caused by fatigue stress caused by surface defects in the oil holes. Recommendation includes drilling the oil holes by a technique that essentially eliminates surface defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001137
EISBN: 978-1-62708-228-0
... Abstract Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed...
Abstract
Following a fracture mechanics “fitness-for-purpose” analysis of petroleum industry cold service pressure vessels, using the British Standard PD 6493, it was realized that an analogous approach could be used for the failure analysis of a similar pressure vessel dome which had failed in service some years previously. The failed pressure vessel, with a diam of 2.5 m and several meters tall, had been made of 12 mm thick IZETT steel plate of the same type and heat treatment as used in the earlier fitness-for-purpose already measured. Examination of the fracture surfaces suggested, from fatigue striations manifested by SEM, that the vessel was subject to significant fatigue cracking, which was probably corrosion assisted. From COD measurements at the operating temperature of -130 deg C (-202 deg F), and a finite stress analysis, a fracture mechanics evaluation using BS PD6493 yielded realistic critical flaw sizes (in the range 51 to 150 mm). These sizes were consistent with the limited fracture surface observations and such flaws could well have been present in the vessel dome prior to catastrophic failure. For similar pressure vessels, an inspection program based on a leak-before-break philosophy was consequently regarded as acceptable.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001148
EISBN: 978-1-62708-228-0
... of the pipe that did not fracture during the explosion and from piece 5-1 which contained the fracture origin site. Both pieces were found to have 0.30% carbon and 1.2% Mn with sulfur and phosphorus impurities acceptably low. Fracture mechanics analysis used in conjunction with fractographic results confirmed...
Abstract
A natural gas pipeline explosion and subsequent fire significantly altered the pipeline steel microstructure, obscuring in part the primary cause of failure, namely, coating breakdown at a local hard spot in the steel. Chemical analysis was made on pieces cut from the portion of the pipe that did not fracture during the explosion and from piece 5-1 which contained the fracture origin site. Both pieces were found to have 0.30% carbon and 1.2% Mn with sulfur and phosphorus impurities acceptably low. Fracture mechanics analysis used in conjunction with fractographic results confirmed the existence of a very hard spot in the steel prior to the explosion, which was softened significantly in the ensuing fire. This finding allowed the micromechanism leading to fracture to be identified as hydrogen embrittlement resulting from cathodic charging.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006910
EISBN: 978-1-62708-395-9
...Types of tests, standards, and required specimens for assessing the fracture mechanics of plastics according to their main mode of deformation/fracture and applied loading rate Table 1 Types of tests, standards, and required specimens for assessing the fracture mechanics of plastics according...
Abstract
There are many different types of polymeric materials, ranging from glassy to semicrystalline polymers and even blends. Their mechanical properties range from pure elastic with very high strains to fracture (elastomers) to almost pure linear elastic (Hookian behavior) with low strains to fracture (glassy polymers). This article provides an overview of historical development of fracture behavior in polymers. It discusses the processes involved in three fracture test methods for polymers, namely linear elastic fracture mechanics, elastic-plastic fracture mechanics, and post-yield fracture mechanics.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006918
EISBN: 978-1-62708-395-9
... for K -based fracture mechanics analysis. Fig. 4 Crack-growth progression in a miniature single-edge notched-bend sample of polycarbonate (PC). The series of crack-growth images were taken under a static force, resulting in the capture of viscoelastic crack growth in PC. (a) A lone craze...
Abstract
This article reviews generalized test methodologies for fatigue characterization of polymers and examines fatigue fracture mechanisms in different engineering plastics. It provides detailed micromechanistic images of crack-tip processes for a variety of semicrystalline and amorphous engineering polymers. The article describes fracture mechanics solutions and approaches to the fatigue characterization of engineering polymers when dealing with macroscale fatigue crack growth. It includes mechanistic images for high-density polyethylene, ultrahigh-molecular-weight polyethylene, nylon 6, 6, polycarbonate, and polypropylene. The article describes the micromechanisms of toughening of plastics and uses a macroscale approach of applying fracture mechanics to the fatigue life prediction of engineering polymers, building on the mechanistic concepts. It also describes the factors affecting fatigue performance of polymers.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... related interest in quantitative assessment of load carrying capability as predicted by fracture mechanics (and vice versa). The coupling probably first became obvious when Griffith's model for brittle fracture was applied to the study of cleavage fracture in metallic materials in 1954...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... Abstract Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... Abstract This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
... Abstract This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001790
EISBN: 978-1-62708-241-9
... in service for more than 30 years, failed shortly after the bearings were replaced. Examination of the shaft revealed cyclic fatigue, with a substantial distribution of nonmetallic inclusions near the fracture initiation site. Fracture mechanics analysis indicated that, if stresses acting on the shaft were...
Abstract
The failure of a high-speed pinion shaft from a marine diesel engine was investigated. The shaft, which had been in service for more than 30 years, failed shortly after the bearings were replaced. Examination of the shaft revealed cyclic fatigue, with a substantial distribution of nonmetallic inclusions near the fracture initiation site. Fracture mechanics analysis indicated that, if stresses acting on the shaft were induced only by normal service loads, there was little likelihood that the inclusions served as failure initiation sites. Further examination of the bearing elements revealed an abnormal wear pattern, consistent with the application of elevated bending loads. The root cause of failure was determined to be an increase in service stresses after bearing replacement along with the presence of nonmetallic inclusions in the shaft.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001056
EISBN: 978-1-62708-214-3
... configurations of partial through-wall cracks considered for the fracture mechanics analysis. Fig. 7 Experimental results obtained using the ligament plastic instability criterion. Fig. 10 Scanning electron micrograph showing ductile transgranular thermal fatigue striations on initiation zone...
Abstract
Type 347 stainless steel moderator circuit branch piping in a pressurized hot water reactor was experiencing frequent leakage. Investigation of the problem involved failure analysis of leaking pipe specimens, analytical stress analysis, and determination of “leak-before-break” conditions using fracture mechanics and thermal fatigue simulation tests. Failure analysis indicated that cracking had been initiated by thermal fatigue. Data from the analysis were used in making the leak-before-break predictions. It was determined that the cracks could grow to two-thirds of the circumferential length of the pipe without catastrophic failure. A thin stainless steel sleeve was inserted in the branch pipe to resolve the problem.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
... Abstract A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides...
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001649
EISBN: 978-1-62708-234-1
... Abstract Two titanium alloy wing attachment bolts from a commercial jetliner failed during the course of a routine service operation. Failure of the bolts occurred during the re-torque process as the wing was being reattached. Metallurgical failure analysis indicated that the fracture mechanism...
Abstract
Two titanium alloy wing attachment bolts from a commercial jetliner failed during the course of a routine service operation. Failure of the bolts occurred during the re-torque process as the wing was being reattached. Metallurgical failure analysis indicated that the fracture mechanism was ductile overload and that the mechanical properties of the bolts were consistent with exemplar bolts that had been supplied. After eliminating other sources of excessive load application, the most probable cause of failure was ascribed to variances between the frictional characteristics of the bolt at the time of re-torque and at the time of initial torque application several years earlier.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001079
EISBN: 978-1-62708-214-3
... with oxides.Across-sectional view of the magnetic particle indication found in the ring sample shown in Fig. 2 . 355×. Abstract Numerous flaws were detected in a steam turbine rotor during a scheduled inspection and maintenance outage. A fracture-mechanics-based analysis of the flaws showed that the rotor...
Abstract
Numerous flaws were detected in a steam turbine rotor during a scheduled inspection and maintenance outage. A fracture-mechanics-based analysis of the flaws showed that the rotor could not be safely returned to service. Material, samples from the bore were analyzed to evaluate the actual mechanical properties and to determine the metallurgical cause of the observed indications. Samples were examined in a scanning electron microscope and subjected to chemical analysis and several mechanical property tests, including tensile, Charpy V-notch impact, and fracture toughness. The material was found to be a typical Cr-Mo-V steel, and it met the property requirements. No evidence of temper embrittlement was found. The analyses showed that the observed flaws were present in the original forging and attributed them to lack of ingot consolidation. A series of actions, including overboring of the rotor to remove indications close to the surface and revision of starting procedures, were implemented to extend the remaining life of the rotor and ensure its fitness for continued service.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001762
EISBN: 978-1-62708-241-9
.... Bearings ride directly on the axles. This article provides a fractography/fracture mechanic approach to making the determination of when the axle failed. Full scale tests on axle assemblies and suspensions provided data for fracture toughness in the induction hardened outer case on the axle. These tests...
Abstract
Rollover accidents in light trucks and cars involving an axle failure frequently raise the question of whether the axle broke causing the rollover or did the axle break as a result of the rollover. Axles in these vehicles are induction hardened medium carbon steel. Bearings ride directly on the axles. This article provides a fractography/fracture mechanic approach to making the determination of when the axle failed. Full scale tests on axle assemblies and suspensions provided data for fracture toughness in the induction hardened outer case on the axle. These tests also demonstrated that roller bearing indentions on the axle journal, cross pin indentation on the end of the axle, and axle bending can be accounted for by spring energy release following axle failure. Pre-existing cracks in the induction hardened axle are small and are often difficult to see without a microscope. The pre-existing crack morphology was intergranular fracture in the axles studied. An estimate of the force required to cause the axle fracture can be made using the measured crack size, fracture toughness determined from these tests, and linear elastic fracture mechanics. The axle can be reliably said to have failed prior to rollover if the estimated force for failure is equal to or less than forces imposed on the axle during events leading to the rollover.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001820
EISBN: 978-1-62708-180-1
... Abstract This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also...
Abstract
This article describes the failure characteristics of high-pressure long-distance pipelines. It discusses the causes of pipeline failures and the procedures used to investigate them. The use of fracture mechanics in failure investigations and in developing remedial measures is also reviewed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001504
EISBN: 978-1-62708-217-4
..., troublesome failure mechanisms, the role of high strength aluminum alloys and steels, and situations where fracture mechanics analyses provided insight into the failures. The two main failure mechanisms were: fatigue occurring mainly in steel components, and corrosion related problems with aluminum alloys...
Abstract
Despite extensive aircraft landing gear design analyses and tests performed by designers and manufacturers, and the large number of trouble-free landings, aircraft users have experienced problems with and failures of landing gear components. Different data banks and over 200 failure analysis reports were surveyed to provide an overview of structural landing gear component failures as experienced by the Canadian Forces over the last 20 years on more than 20 aircraft types, and to assess trends in failure mechanisms and causes. Case histories were selected to illustrate typical problems, troublesome failure mechanisms, the role of high strength aluminum alloys and steels, and situations where fracture mechanics analyses provided insight into the failures. The two main failure mechanisms were: fatigue occurring mainly in steel components, and corrosion related problems with aluminum alloys. Very few overload failures were noted. A number of causes were identified: design deficiencies and manufacturing defects leading mainly to fatigue failures, and poor materials selection and improper maintenance as the principal causes of corrosion-related failures. The survey showed that a proper understanding of the failure mechanisms and causes, by thorough failure analysis, provides valuable feedback information to designers, operators and maintenance personnel for appropriate corrective actions to be taken.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001140
EISBN: 978-1-62708-227-3
... employing the “leak-before-break” design philosophy, developed using fracture mechanics, to eliminate the possibility of catastrophic ruptures. Gas cylinders Sea water Al-5Mg Mixed-mode fracture Stress-corrosion cracking Introduction The employment of light cylinders made of aluminum...
Abstract
Several pressurized air containers (i.e., diving tanks) made of non-heat-treatable Al-5Mg aluminum alloy failed catastrophically. Catastrophic failure occurred when a subcritical stress corrosion crack reached a critical size. Critical crack size for unstable propagation was reached prior to wall penetration, which could have led to subsequent loss of pressure, resulting in explosion of the cylinder. It was recommended that more stress corrosion resistant alloys be used for sea diving applications. Furthermore, cylinders should have a reduced wall thickness that can be determined employing the “leak-before-break” design philosophy, developed using fracture mechanics, to eliminate the possibility of catastrophic ruptures.
1