Skip Nav Destination
Close Modal
By
W.T. Becker, S. Lampman
By
M.E. Stevenson, P.D. Umberger, S.F. Uchneat
By
John D. Landes, W.T. Becker, Roch S. Shipley, Julian Raphael
By
W.T. Becker
By
Russell A. Lund, Shahram Sheybany
Search Results for
fracture
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 4049
Search Results for fracture
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fracture Appearance and Mechanisms of Deformation and Fracture
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Book Chapter
Fracture Appearance and Mechanisms of Deformation and Fracture
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... Abstract Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... Abstract This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Book Chapter
Stress Analysis and Fracture Mechanics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003530
EISBN: 978-1-62708-180-1
... of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics...
Abstract
This article describes the underlying fundamentals, applications, the relevance and necessity of performing proper stress analysis in conducting a failure analysis. It presents an introduction to the stress analysis of bodies containing crack-like imperfections and the topic of fracture mechanics. The fracture mechanics approach is an important part of stress analysis at the tips of sharp cracks or discontinuities. The article reviews fracture mechanics concepts, including linear elastic fracture mechanics, elastic-plastic fracture mechanics, and subcritical fracture mechanics. It also provides information on the applications of fracture mechanics in failure analysis.
Book Chapter
Fracture of Plastics
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003541
EISBN: 978-1-62708-180-1
... Abstract This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals. It provides information on deformation, fracture, and crack propagation as well as the fractography involving the examination and interpretation of fracture...
Abstract
This article reviews the mechanical behavior and fracture characteristics that discriminate structural polymers from metals. It provides information on deformation, fracture, and crack propagation as well as the fractography involving the examination and interpretation of fracture surfaces, to determine the cause of failure. The fracture modes such as ductile fractures and brittle fractures are reviewed. The article also presents a detailed account of various fracture surface features. It concludes with several cases of field failure in various polymers that illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003542
EISBN: 978-1-62708-180-1
... Abstract Fractography is the means and methods for characterizing a fractured specimen or component. This includes the examination of fracture-exposed surfaces and the interpretation of the fracture markings as well as the examination and interpretation of crack patterns. This article describes...
Abstract
Fractography is the means and methods for characterizing a fractured specimen or component. This includes the examination of fracture-exposed surfaces and the interpretation of the fracture markings as well as the examination and interpretation of crack patterns. This article describes the former of these two parts of fractography. It presents the techniques of fractography and explains fracture markings using glass and ceramic examples. The article also discusses the fracture modes in ceramics and provides examples of fracture origins.
Book Chapter
Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... Abstract This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Book Chapter
Fatigue Fracture Appearances
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... Abstract This article commences with a summary of fatigue processes and mechanisms. It focuses on fractography of fatigue. Characteristic fatigue fracture features that can be discerned visually or under low magnification are described. Typical microscopic features observed on structural metals...
Abstract
This article commences with a summary of fatigue processes and mechanisms. It focuses on fractography of fatigue. Characteristic fatigue fracture features that can be discerned visually or under low magnification are described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion of fatigue in nonmetals. The article reviews the various macroscopic and microscopic features to characterize the history and growth rate of fatigue in metals. It concludes with a description of fatigue of polymers and composites.
Book Chapter
Fatigue Fracture of a Chromium-Molybdenum Steel Integral Coupling and Gear
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0046242
EISBN: 978-1-62708-236-5
... teeth (found at visual inspection) was composed of the same material as the metal in the coupling. Beach marks and evidence of cold work, typical of fatigue failure, were found on the fracture surface. Chips remaining in the analysis cut were difficult to remove, indicating a strong magnetic field...
Abstract
An integral coupling and gear (Cr-Mo steel), used on a turbine-driven main boiler-feed pump, was removed from service after one year of operation because of excessive vibration. Spectrographic analysis and metallographic examination revealed the fact that gritty material in the gear teeth (found at visual inspection) was composed of the same material as the metal in the coupling. Beach marks and evidence of cold work, typical of fatigue failure, were found on the fracture surface. Chips remaining in the analysis cut were difficult to remove, indicating a strong magnetic field in the part. Evidence found supports the conclusions that failure of the coupling was by fatigue and that incomplete demagnetization of the coupling following magnetic-particle inspection caused retention of metal chips in the roots of the teeth. Improper lubrication caused gear teeth to overheat and spall, producing chips that eventually overstressed the gear, causing failure. Because the oil circulation system was not operating properly, metal chips were not removed from the coupling. Recommendations included checking the replacement coupling for residual magnetism and changing or filtering the pump oil to remove any debris.
Book Chapter
Fatigue Fracture of a Rebuilt Exciter Shaft That Was Accelerated by Weld-Deposit Cracks
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047558
EISBN: 978-1-62708-236-5
... Abstract The shaft of an exciter that was used with a diesel-driven electric generator broke at a fillet after ten hours of service following resurfacing of the shaft by welding. The fracture surface contained a dull off-center region of final ductile fracture surrounded by regions of fatigue...
Abstract
The shaft of an exciter that was used with a diesel-driven electric generator broke at a fillet after ten hours of service following resurfacing of the shaft by welding. The fracture surface contained a dull off-center region of final ductile fracture surrounded by regions of fatigue that had been subjected to appreciable rubbing. The fracture appeared to be typical of rotary bending fatigue under conditions of a low nominal stress with a severe stress concentration. It appeared that the fatigue cracks initiated in the surface-weld layer. The weld deposit in the original keyway displays a lack of fusion at the bottom corner. Fatigue fracture of the shaft resulted from stresses that were created by vibration acting on a crack or cracks formed in the weld deposit because of the lack of preheating and postheating. Rebuilding of exciter shafts should be discontinued, and the support plate of the exciter should be braced to reduce the amount of transmitted vibration. Also, the fillet in the exciter shaft should be carefully machined to provide an adequate radius.
Book Chapter
Fracture of High-Strength Screws During Installation
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0090929
EISBN: 978-1-62708-236-5
... in the absence of gross defects or embrittlement. It was subsequently determined that a nonapproved lubricant had been used during installation. Tension preloads can be more than twice their normal level on lubricated fasteners because of reduced friction, and in this case, the preload was sufficient to fracture...
Abstract
Size M5 x 0.8 mm, class 8.8 metric screws were failing during application, reportedly at the normal installation torque. Investigation (visual inspection, metallographic analysis, and unetched 8.9x fractographs) supported the conclusion that the fasteners failed via ductile overload in the absence of gross defects or embrittlement. It was subsequently determined that a nonapproved lubricant had been used during installation. Tension preloads can be more than twice their normal level on lubricated fasteners because of reduced friction, and in this case, the preload was sufficient to fracture the screws. No recommendations were made.
Book Chapter
Fatigue Fracture of a Motor Shaft Due to the Application of Weld Metal
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001435
EISBN: 978-1-62708-236-5
... Abstract Shaft fracture of a 10 hp squirrel cage motor took place at the driving end just outside the roller bearing and not at an abrupt change of section behind the bearing where it might be expected to occur. A portion of shaft to the right of the fracture was deeply grooved. About a year...
Abstract
Shaft fracture of a 10 hp squirrel cage motor took place at the driving end just outside the roller bearing and not at an abrupt change of section behind the bearing where it might be expected to occur. A portion of shaft to the right of the fracture was deeply grooved. About a year prior to failure the inner race of the roller bearing became slack on the shaft and the seating was built up by the metal-spray process. The shaft was machined to form a rough thread to provide the requisite mechanical key for the sprayed-on metal. Part of this sprayed-on layer became detached after the fatigue failure occurred. The quality of the welding was poor. Slag inclusions were present adjacent to the sides of the keyway, which had been re-cut shorter than the original one after the welding repair. Failure at the unusual location was caused by the presence of the weld deposit.
Book Chapter
Fracture of Welds in a Pressure Vessel Because of Atmospheric Contamination
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047641
EISBN: 978-1-62708-235-8
... Abstract A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding...
Abstract
A Ti-6Al-4V alloy pressure vessel failed during a proof-pressure test, fracturing along the center girth weld. The girth joints were welded with the automatic gas tungsten arc process utilizing an auxiliary trailing shield attached to the welding torch to provide inert-gas shielding for the exterior surface of the weld. A segmented backup ring with a gas channel was used inside the vessel to shield the weld root. The pressure vessel failed due to contamination of the fusion zone by oxygen, which resulted when the gas shielding the root face of the weld was diluted by air that leaked into the gas channel. Thermal stresses cracked the embrittled weld, exposing the crack surfaces to oxidation before cooling. One of these cracks caused a stress concentration so severe that failure of the vessel wall during the proof test was inevitable. A sealing system at the split-line region of the segmented backup ring was provided, and a fine-mesh stainless steel screen diffuser was incorporated in the channel section of the backup ring to prevent air from leaking in. A titanium alloy color chart was furnished to permit correlation of weld-zone discoloration with the degree of atmospheric contamination.
Book Chapter
Fatigue Fracture of a Music-Wire Spring Caused by Poor Electroplating Practice
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048143
EISBN: 978-1-62708-235-8
... Abstract A cadmium-plated music-wire return spring that operated in a pneumatic cylinder designed for infinite life at a maximum stress level of 620 MPa failed after 240,000 cycles. An extremely hard and small kernel, which looked like a weld deposit, was observed at the center of the fractured...
Abstract
A cadmium-plated music-wire return spring that operated in a pneumatic cylinder designed for infinite life at a maximum stress level of 620 MPa failed after 240,000 cycles. An extremely hard and small kernel, which looked like a weld deposit, was observed at the center of the fractured surface. The kernel was assumed to have resulted from extreme localized overheating. These springs were reported to have been barrel electroplated after fabrication. The intermittent contact with the dangler (suspended cathode contact) as the barrel rotated allowed high local currents when the last contact was broken was revealed to have resulted in an arc that caused local melting of the metal being plated. The molten metal was interpreted to have been quenched instantly by the plating solution and by the mass of the cold metal of the spring. The hard spot caused by arcing during plating was concluded to be the reason of the fatigue failure. Rack plating or barrels with fixed button contacts at many points instead of dangler-type contacts were recommended to avoid hard spots.
Book Chapter
Fracture of a Cast Steel Bracket
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0090974
EISBN: 978-1-62708-235-8
... at the time of failure were characterized as relatively cold. Investigation (visual inspection, chemical analysis, and unetched 119x and 2% nital etched 119x SEM images) supported the conclusion that the bracket failed through brittle overload fracture due to a number of synergistic factors. The quenched...
Abstract
A cast steel bracket manufactured in accordance with ASTM A 148 grade 135/125 steel failed in railroad maintenance service. Ancillary property requirements included a 285 to 331 HB hardness range and minimum impact energy of 27 J (20 ft·lbf) at -40 deg C (-40 deg F). The conditions at the time of failure were characterized as relatively cold. Investigation (visual inspection, chemical analysis, and unetched 119x and 2% nital etched 119x SEM images) supported the conclusion that the bracket failed through brittle overload fracture due to a number of synergistic factors. The quenched-and-tempered microstructure contained solidification shrinkage, inherently poor ductility, and type II Mn-S inclusions that are known to reduce ductility. The macro and microscale fracture features confirmed that the casting was likely in low-temperature service at the time of failure. The composition and mechanical properties of the casting did not satisfy the design requirements. Recommendations included exerting better composition control, primarily with regard to melting, deoxidation, and nitrogen control. Better deoxidation practice was recommended to generate the more desirable Mn-S inclusion morphology, and reevaluation of the casting design was suggested to minimize shrinkage.
Book Chapter
Fatigue Fracture That Initiated at a Forging Lap in a Connecting Rod for a Truck Engine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047148
EISBN: 978-1-62708-235-8
... may have been a partial cause for the defect. Recommendations included better inspection of the forgings by fluorescent magnetic-particle testing before machining. Connecting rods Forgings Laps Truck engines 15B41 UNS H15411 Fatigue fracture Metalworking-related failures A connecting...
Abstract
A connecting rod (forged from 15B41 steel and heat treated to a hardness of 29 to 35 HRC) from a truck engine failed after 73,000 Km (45,300 mi) of service. A piece of the I-beam sidewall of the rod, about 6.4 cm (2 in.) long, was missing when the connecting rod arrived at a laboratory for testing. Analysis (visual inspection, 100x nital-etched micrograph, fluorescent magnetic-particle testing, and metallographic examination) supported the conclusion that the rod failed in fatigue with the origin along the lap and located approximately 4.7 mm below the forged surface. The presence of oxides may have been a partial cause for the defect. Recommendations included better inspection of the forgings by fluorescent magnetic-particle testing before machining.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048150
EISBN: 978-1-62708-235-8
... Abstract Grease-wiper springs for cams formed from stampings of 0.25-mm thick carbon spring steel (0.65 to 0.80% C) fractured at the 0.025 mm radius on the stamped 135 deg corner at a 90 deg bend after 5,000,000 cycles. Tool marks 2 to 2.3 mm from the center of the stamped bend were disclosed...
Abstract
Grease-wiper springs for cams formed from stampings of 0.25-mm thick carbon spring steel (0.65 to 0.80% C) fractured at the 0.025 mm radius on the stamped 135 deg corner at a 90 deg bend after 5,000,000 cycles. Tool marks 2 to 2.3 mm from the center of the stamped bend were disclosed by visual examination. Fatigue striations originating from cracks at the 0.025 mm radius inside corner at the bend were revealed by SEM of the fractured surface. The maximum stress at the bend, in stock of maximum thickness and as a function of the radius of the 135 deg corner, was indicated by stress calculations to be very close to the maximum allowable fluctuating stress for the material. The wiper springs were concluded to be fractured in fatigue and the cyclic loading resulted from cam rotation. The maximum applied stress approached the allowable limit due to high stress-concentration factor in the spring (caused by the very small inside radius). The corner radius was increased to 0.76 mm and the tools were re-polished to avoid tool marks.
Book Chapter
Brittle Fracture of a Clamp-Strap Assembly
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045988
EISBN: 978-1-62708-235-8
... on a star-tracking telescope, fractured transversely across two rivet holes closest to one edge of the pin retainer in a completely brittle manner. Comparison with a non-failed strap using microscopic examination, spectrographic analysis, and slow-bend tests showed that both fit the 410 stainless steel...
Abstract
During installation, a clamp-strap assembly, specified to be type 410 stainless steel-austenitized at 955 to 1010 deg C (1750 to 1850 deg F), oil quenched, and tempered at 565 deg C (1050 deg F) for 2 h to achieve a hardness of 30 to 35 HRC, and used for securing the caging mechanism on a star-tracking telescope, fractured transversely across two rivet holes closest to one edge of the pin retainer in a completely brittle manner. Comparison with a non-failed strap using microscopic examination, spectrographic analysis, and slow-bend tests showed that both fit the 410 stainless steel specs, but hardness and grain size were different. Reheat treatment of full-width specimens showed that coarse grain size (ASTM 2 to 3) was responsible for the brittle fracture, and excessively high temperature during austenitizing caused the large grain size in the failed strap. The fact that the hardness of the strap that failed was lower than the specified hardness of 30 to 35 HRC had no effect on the failure because that of the non-failed strap was even lower. Recommendation was that the strap should be heat treated as specified to maintain the required ductility and grain size.
Book Chapter
Brittle Fracture of a Welded Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001436
EISBN: 978-1-62708-235-8
... was broken off with hammer blows. The fracture surface was duplex in nature, there being an annular region surrounding a central zone, which suggests that the fracture developed in two stages. Microscopic examination confirmed that the fracture was of the brittle type. The shaft material showed...
Abstract
A 3 in. diam shaft was found to have suffered excessive wear on one of the journals and was built up by welding. While it was in the lathe prior to turning down the built-up region, a crack was discovered in the root of the oil-seal groove and subsequently the end of the shaft was broken off with hammer blows. The fracture surface was duplex in nature, there being an annular region surrounding a central zone, which suggests that the fracture developed in two stages. Microscopic examination confirmed that the fracture was of the brittle type. The shaft material showed a microstructure typical of a medium-carbon steel (carbon approximately 0.4%) in the normalized condition, a material not weldable by ordinary methods. It was concluded that the post-welding crack arose primarily from the thermal contraction which developed in the weld metal on cooling. It is probable that if the built-up zone had extended beyond the oil seal groove, failure in the manner would not have occurred. Experience indicated however, that failure from fatigue cracking would still have been likely to occur.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089459
EISBN: 978-1-62708-235-8
... Abstract The connecting end of two forged medium-carbon steel rods used in an application in which they were subjected to severe low-frequency loading failed in service. The fractures extended completely through the connecting end. The surface hardness of the rods was found to be lower than...
Abstract
The connecting end of two forged medium-carbon steel rods used in an application in which they were subjected to severe low-frequency loading failed in service. The fractures extended completely through the connecting end. The surface hardness of the rods was found to be lower than specifications. The fractures were revealed to be in areas of the transition regions that had been rough ground to remove flash along the parting line. The presence of beach marks, indicating fatigue failure, was revealed by examination. The fracture origin was confirmed by the location and curvature of beach marks to be the rough ground surface. An incipient crack 9.5 mm along with several other cracks on one of the fractured rods was revealed by liquid penetration examination. Metallographic examination of the fractured rods indicated a banded structure consisting of zones of ferrite and pearlite. It was established that the incipient cracks found in liquid-penetrant inspection had originated at the surface in the banded region, in areas of ferrite where this constituent had been visibly deformed by grinding. Closer control on the microstructure, hardness of the forgings and smooth finish in critical area was recommended.
1