Skip Nav Destination
Close Modal
By
R. H. McSwain, R. W. Gould
By
Donghuan Liu, Xinchun Shang
By
M. A. Alfares, A. H. Falah, A. H. Elkholy
By
G. Pantazopoulos, A. Vazdirvanidis
By
G.H. Walter, R.M. Hendrickson, R.D. Zipp
By
J.A. Pero-Sanz, D. Plaza, M. Ruiz, J. Asensio, J.I. Verdeja
By
Edward A. Lauchner, Robert E. Herfert
By
R. K. Mishra, Thomas Johney, K. Srinivasan
By
Qiaoling Chu, Min Zhang, Yinni Chen
By
Marina Banuta, Isabelle Tarquini
By
Jonathan Carlos Contreras, Sylvia Lucia Natividad, Stephen William Stafford
By
D. A. Meyn, R. A. Bayles
By
R.J.H. Wanhill
By
Cassio Barbosa, Ibrahim de Cerqueira Abud, Tatiana Silva Barros, Sheyla Santana de Carvalho, Ieda Maria Vieira Caminha
Search Results for
fractographic analysis
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 482
Search Results for fractographic analysis
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Fractographic analysis of failed Charpy specimens of 4340 steel tempered to...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 50 Fractographic analysis of failed Charpy specimens of 4340 steel tempered to various strength levels. The upper curve represents room-temperature specimens; the lower curve represents specimens broken at −196 °C (−320 °F). All percentages are estimated. Source: Ref 69
More
Image
Fractographic analysis of failed Charpy specimens of 4340 alloy steel tempe...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 50 Fractographic analysis of failed Charpy specimens of 4340 alloy steel tempered to various strength levels. The upper curve represents room-temperature specimens; the lower curve represents specimens broken at −195 °C (−320 °F). All percentages are estimated. Source: Ref 70
More
Book Chapter
Analysis of a Helicopter Blade Fatigue Fracture by Digital Fractographic Imaging Analysis
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001144
EISBN: 978-1-62708-217-4
... the aircraft was landed. The helicopter main rotor blade spar fracture was analyzed by conventional and advanced computerized fractographic techniques. Digital fractographic Imaging Analysis of theoretical and actual fracture surfaces was applied for automatic detection of fatigue striation spacing...
Abstract
A helicopter was hovering approximately 10 ft above a ship when one spar section failed explosively. Visual inspection revealed a crack had progressed through one member of a dual spar plate assembly at a fold pin lug hole. The remaining spar plate carried the blade load until the aircraft was landed. The helicopter main rotor blade spar fracture was analyzed by conventional and advanced computerized fractographic techniques. Digital fractographic Imaging Analysis of theoretical and actual fracture surfaces was applied for automatic detection of fatigue striation spacing. The approach offered a means of quantification of fracture features, providing for objective fractography.
Book Chapter
Failure Investigation of the Wind Turbine Blade Root Bolt
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001835
EISBN: 978-1-62708-241-9
... testing, metallurgical examination, mechanical property testing, and fractographic analysis, it was determined that the bolt failed by fatigue accelerated by stress concentration at low temperatures. The investigation also provided suggestions for avoiding similar failures. threaded fasteners...
Abstract
Wind turbine blades are secured by a number of high-strength bolts. The failure of one such bolt, which caused a turbine blade to detach, was investigated to determine why it fractured. Based on the results of a detailed analysis, consisting of stress calculations, chemical composition testing, metallurgical examination, mechanical property testing, and fractographic analysis, it was determined that the bolt failed by fatigue accelerated by stress concentration at low temperatures. The investigation also provided suggestions for avoiding similar failures.
Book Chapter
Failure Analysis of a Vehicle Engine Crankshaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001761
EISBN: 978-1-62708-241-9
... electron microscope (SEM) equipped with electron-dispersive X-ray analysis (EDAX). Microhardness gradient through the nitrided layer close to fracture, surface hardness, and macrohardness at the journals were all measured. Fractographic analysis indicated that fatigue was the dominant mechanism of failure...
Abstract
An investigation of a damaged crankshaft from a horizontal, six-cylinder, in-line diesel engine of a public bus was conducted after several failure cases were reported by the bus company. All crankshafts were made from forged and nitrided steel. Each crankshaft was sent for grinding, after a life of approximately 300,000 km of service, as requested by the engine manufacturer. After grinding and assembling in the engine, some crankshafts lasted barely 15,000 km before serious fractures took place. Few other crankshafts demonstrated higher lives. Several vital components were damaged as a result of crankshaft failures. It was then decided to send the crankshafts for laboratory investigation to determine the cause of failure. The depth of the nitrided layer near fracture locations in the crankshaft, particularly at the fillet region where cracks were initiated, was determined by scanning electron microscope (SEM) equipped with electron-dispersive X-ray analysis (EDAX). Microhardness gradient through the nitrided layer close to fracture, surface hardness, and macrohardness at the journals were all measured. Fractographic analysis indicated that fatigue was the dominant mechanism of failure of the crankshaft. The partial absence of the nitrided layer in the fillet region, due to over-grinding, caused a decrease in the fatigue strength which, in turn, led to crack initiation and propagation, and eventually premature fracture. Signs of crankshaft misalignment during installation were also suspected as a possible cause of failure. In order to prevent fillet fatigue failure, final grinding should be done carefully and the grinding amount must be controlled to avoid substantial removal of the nitrided layer. Crankshaft alignment during assembly and proper bearing selection should be done carefully.
Book Chapter
Fractographic and Metallographic Study of Spalling Failure of Steel Straightener Rolls
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001849
EISBN: 978-1-62708-241-9
... Abstract Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis revealed...
Abstract
Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis revealed the presence of a characteristic fatigue crack propagation pattern (beach marks) and radial chevron marks indicating the occurrence of final overload through a brittle intergranular fracture. The collected evidence suggests that surface-initiated cracks propagated by fatigue led to spalling, resulting in severe work roll damage as well as machine downtime and increased maintenance costs.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001027
EISBN: 978-1-62708-214-3
... was recommended, along with nondestructive inspection of the region at intervals determined by fractographic analysis of the fatigue crack growth. Bolted joints Drives Helicopters Military planes Shafts (power) 4340 UNS G43400 Corrosion fatigue Background The 4340 steel main rotor yoke...
Abstract
The 4340 steel main rotor yoke of a helicopter failed during a hovering exercise. Visual examination of the yoke revealed no evidence of gross external damage. Visual fracture surface examination, macrofractography, scanning electron micrography, and metallography of a section cut from the yoke in the region of the cracking indicated that the failure was caused by fatigue-crack initiation and growth from severe corrosion damage to a pillow-block bolt hole. Corrosion occurred because of failure of the protection scheme. An upgraded corrosion protection scheme for the bolt holes was recommended, along with nondestructive inspection of the region at intervals determined by fractographic analysis of the fatigue crack growth.
Book Chapter
Anomalous Fractures of Diesel Engine Bearing Cap Bolts
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001377
EISBN: 978-1-62708-215-0
... Abstract Sudden and unexplained bearing cap bolt fractures were experienced with reduced-shank design bolts fabricated from 42 CrMo 4 steel, quenched and tempered to a nominal hardness of 38 to 40 HRC. Fractographic analysis provided evidence favoring stress-corrosion cracking as the operating...
Abstract
Sudden and unexplained bearing cap bolt fractures were experienced with reduced-shank design bolts fabricated from 42 CrMo 4 steel, quenched and tempered to a nominal hardness of 38 to 40 HRC. Fractographic analysis provided evidence favoring stress-corrosion cracking as the operating transgranular fracture failure mechanism. Water containing H7S was subsequently identified as the aggressive environment that precipitated the fractures in the presence of high tensile stress. This environment was generated by the chemical breakdown of the engine oil additive and moisture ingress into the normally sealed bearing cap chamber surrounding the bolt shank. A complete absence of fractures in bolts from one of the two vendors was attributed primarily to surface residual compressive stresses produced on the bolt shank by a finish machining operation after heat treatment. Shot cleaning, with fine cast shot, produced a surface residual compressive stress, which eliminated stress-corrosion fractures under severe laboratory conditions.
Book Chapter
Creep Failure Analysis of Steel Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001711
EISBN: 978-1-62708-229-7
... Abstract Failures of 10Cr-Mo9-10 and X 20Cr-Mo-V12-1 superheated pipes during service in steam power generation plants are described. Through micrographic and fractographic analysis, creep and overheating were identified as the cause of failure. The Larson-Miller parameter is computed...
Abstract
Failures of 10Cr-Mo9-10 and X 20Cr-Mo-V12-1 superheated pipes during service in steam power generation plants are described. Through micrographic and fractographic analysis, creep and overheating were identified as the cause of failure. The Larson-Miller parameter is computed, as a function of oxidation thickness, temperature and time, confirming the creep failure diagnostic.
Book Chapter
Electron Fractography Pinpoints Cause of Fatigue Fracture
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001537
EISBN: 978-1-62708-234-1
... fractographic analysis was performed to determine the exact cause of failure. Fig. 1 In a forging of 7079-T6, failure started at Region 1. Numbered regions refer to failure modes shown in Fig. 2 . Top photo, 3 4 ×; Bottom, 2 1 2 × Fig. 2 Fractography revealed...
Abstract
After completing a fatigue test of an aluminum alloy component machined from a 7079-T6 forging, technicians noted a 5 in. crack which ran longitudinally above and through the flange. When the fracture face was examined by light microscopy, observers could not ascertain the exact mode of fracture. Electron fractography revealed that five different modes of crack growth were operative as the part failed. Region 1 was a shallow zone (about 0.002 in. at its deepest) of dimpled structure typical of an overload failure. Region 2 was a zone that grew by a stress corrosion mechanism. Through a fatigue mechanism was operative in Region 3, it was not the cause of the large crack. Region 4, which covered 50% of the fracture area, developed mainly by stress corrosion. This zone gradually changed into the combination of intergranular and transgranular overload in Region 5, which covered approximately the remaining 50% of the fracture. Apparently, after stress corrosion moved halfway through, the part failed by overload. This failure analysis proved that a crack, originally thought to be a fatigue failure, was actually a stress corrosion crack.
Book Chapter
Failure Analysis of HP Turbine Blades in a Low Bypass Turbofan Engine
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001756
EISBN: 978-1-62708-241-9
... in the dovetail region, causing extensive damage throughout the turbine. Remedial measures were suggested to prevent such failures in the future. aircraft turbine blades fatigue fracture operating overload nickel-base alloy fatigue cracking fractographic analysis fracture surface structure Nimonic...
Abstract
The failure of HP turbine blades in a low bypass turbofan engine was analyzed to determine the root cause. Forensic and metallurgical investigations were conducted on all failed blades as well as failed downstream components. It was found that one of the blades fractured in the dovetail region, causing extensive damage throughout the turbine. Remedial measures were suggested to prevent such failures in the future.
Book Chapter
Failure Analysis of Steady Clamps Used in Electrified Railway
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001845
EISBN: 978-1-62708-241-9
... an investigation that included fractographic and microstructural analysis, hardness testing, inductively coupled plasma spectroscopy, and finite-element analysis. The fracture was shown to be brittle in nature and covered with oxide flakes, but no other flaws relevant to the failure were observed...
Abstract
Two clamps that support overhead power lines in an electrified rail system fractured within six months of being installed. The clamps are made of CuNiSi alloy, a type of precipitation-strengthening nickel-silicon bronze. To identify the root cause of failure, the rail operator led an investigation that included fractographic and microstructural analysis, hardness testing, inductively coupled plasma spectroscopy, and finite-element analysis. The fracture was shown to be brittle in nature and covered with oxide flakes, but no other flaws relevant to the failure were observed. The investigation results suggest that the root cause of failure was a forging lap that occurred during manufacturing. Precracks induced by the forging defect and the influence of preload stress (due to bolt torque) caused the premature failure.
Book Chapter
Fatigue Failure of a Drive Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
..., 800×) Fractographic Analysis Examination of the available fracture surfaces was performed at macro scale, to identify the fracture mode. Preliminary examination of the mating fractures found that they have almost identical morphologies. The best preserved was then used for fractographic...
Abstract
The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used in the design calculations, thus causing the initiation of the cracking. Moreover, although the shaft had been quenched and tempered, its actual hardness did not have the optimal value for long-term fatigue strength.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001296
EISBN: 978-1-62708-215-0
.... Specimen Selection One of the two broken pieces was selected for fractographic analysis. A section across the origin of failure was metallographically prepared for microstructural studies. Visual Examination of General Physical Features Visual examination revealed that the valve guide had...
Abstract
A 52000 bearing steel valve guide component operating in the fuel supply system of a transport aircraft broke into two pieces after 26 h of flight. The valve guide fractured through a set of elongated holes that had been electrodischarge machined into the component. Analysis indicated that the part failed by low cycle fatigue. The fracture was brittle in nature and had originated at a severely eroded zone of craters in a hard, deep white layer that was the result of remelting during electrodischarge machining. It was recommended that the remaining parts be inspected using a stereoscopic microscope and/or a borescope.
Book Chapter
Failure Analysis Case Study on a Fractured Tailwheel Fork
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001753
EISBN: 978-1-62708-241-9
... particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture. aircraft landing gear intergranular fracture overaging cast aluminum-zinc alloy shrinkage porosity fractographic analysis optical emission spectroscopy...
Abstract
A failure analysis investigation was conducted on a fractured aluminum tailwheel fork which failed moments after the landing of a privately owned, 1955 twin-engine airplane. Nondestructive evaluation via dye-penetrant inspection revealed no discernible surface cracks. The chemical composition of the sand-cast component was identified via optical emission spectroscopy and is comparable to an aluminum sand-cast alloy, AA 712.0. Metallographic evaluation via optical microscopy and scanning electron microscopy revealed a high degree of porosity in the microstructure as well as the presence of deleterious intermetallic compounds within interdendritic regions. Macrohardness testing produced hardness values which are noticeably higher than standard hardness values for 712.0. The primary fracture surfaces indicate evidence of mixed-mode fracture, via intergranular cracking, cleaved intermetallic particles, and dimpled cellular regions in the matrix. The secondary fracture surface demonstrates similar features of intergranular fracture.
Book Chapter
Analysis of Sub-Critical Cracking in a Ti-5Al-2.5Sn Liquid Hydrogen Control Valve
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001558
EISBN: 978-1-62708-217-4
... crack parallel to and partly overlaying area B, and part of it was apparently retained by the missing mating fracture remnant. Areas D and E are not significant. Areas A and B appeared to be the most significant and fruitful for fractographic analysis. At first glance areas A and B appear to have little...
Abstract
A liquid hydrogen main fuel control valve for a rocket engine failed by fracture of the Ti-5Al-2.5Sn body during the last of a series of static engine test firings. Fractographic, metallurgical, and stress analyses determined that a combination of fatigue and unexpected aqueous stress-corrosion cracking initiated and propagated the crack which caused failure. The failure analysis approach and its results are described to illustrate how fractography and fracture mechanics, together with a knowledge of the crack initiation and propagation mechanisms of the valve material under various stress states and environments, helped investigators to trace the cause of failure.
Book Chapter
Material-Based Failure Analysis of a Helicopter Rotor Hub
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001636
EISBN: 978-1-62708-217-4
... properties of the hub material at the failure location. This suggestion became the focus of an extensive material-based failure analysis. 2 This paper surveys the failure analysis procedure, the topics and techniques, and the results. There follows a discussion of how fractographic data from...
Abstract
A Lynx helicopter from the Royal Netherlands Navy lost a rotor blade during preparation for take-off. The blade loss was due to failure of a rotor hub arm by fatigue. The arm was integral to the titanium alloy rotor hub. An extensive material based failure analysis covered the hub manufacture, service damage, and estimates of service stresses. There was no evidence for failure due to poor material properties. However, fractographic and fracture mechanics analyses of the service failure, a full scale test failure, and specimen test failures indicated that the service fatigue stress history could have been more severe than anticipated. This possibility was subsequently supported by a separate investigation of the assumed and actual fatigue loads and stresses.
Book Chapter
Microscopic Analysis of Fractured Screws Used as Implants in Bone Fixation
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001804
EISBN: 978-1-62708-241-9
... associated to body fluids. However, in the present case the screws failed prematurely, showing evidence of fatigue fracture. The use of analytical techniques such as optical microscopy, including macrographic observation in stereomicroscope and fractographic analysis in SEM, revealed that the screws failed...
Abstract
A stainless steel screw securing an orthopedic implant fractured and was analyzed to determine the cause. Investigators used optical and scanning electron microscopy to examine the fracture surfaces and the microstructure of the austenitic stainless steel from which the screw was made. The results of the study indicated that the screw failed due to fatigue fracture stemming from surface cracks generated by stress concentration likely caused by grooves left by improper machining.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001506
EISBN: 978-1-62708-217-4
... of the bend ( Figure 3 ). The SEM fractographic analysis carried out showed that the bracket failure pre-dated the elbow fitting failure. The loss of engine power is also consistent with the fitting being the final component to fail, resulting in a loss of fuel pressure. The dimensional and material...
Abstract
A single-engine aircraft was climbing to 8000 ft when the engine suddenly lost power. The landing gear was torn off during the emergency landing. During the field investigation, the fuel line was found to be separated from the fuel pump outlet due to a failure of the elbow fitting. A bracket which supports the in-line fuel flow transducer also was found broken. Examination of the elbow fracture revealed characteristics of low-cycle fatigue failure. Examination of the support bracket fractures revealed a high-cycle mode of fatigue failure, with the primary fatigue extending along the full length of the 90 deg bend in the bracket. It was concluded that the failure was caused by an incorrectly-installed support bracket. It was recommended that the installation procedure be clarified.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001805
EISBN: 978-1-62708-241-9
... subjected to overload, fatigue, and packaging-aging testing prior to release. Fractographic analysis was performed on the broken blades using scanning electron microscopy (SEM). A representative SEM image of a fracture surface (right side of image), is shown in Fig. 1 . SEM analysis revealed...
Abstract
Several surgical tool failures were analyzed to understand why they occur and how to prevent them. The study included drills, catheters, and needles subjected to the rigors of biomedical applications such as corrosive environments, high stresses, sterilization, and improper cleaning procedures. Given the extreme conditions to which surgical tools can be exposed, and the potential for misuse, failures are inevitable and systematic methods for analyzing them are necessary to keep them in check.
1