Skip Nav Destination
Close Modal
Search Results for
fractograph
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 308 Search Results for
fractograph
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001849
EISBN: 978-1-62708-241-9
...Abstract Abstract Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis...
Abstract
Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis revealed the presence of a characteristic fatigue crack propagation pattern (beach marks) and radial chevron marks indicating the occurrence of final overload through a brittle intergranular fracture. The collected evidence suggests that surface-initiated cracks propagated by fatigue led to spalling, resulting in severe work roll damage as well as machine downtime and increased maintenance costs.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001144
EISBN: 978-1-62708-217-4
... the aircraft was landed. The helicopter main rotor blade spar fracture was analyzed by conventional and advanced computerized fractographic techniques. Digital fractographic Imaging Analysis of theoretical and actual fracture surfaces was applied for automatic detection of fatigue striation spacing...
Abstract
A helicopter was hovering approximately 10 ft above a ship when one spar section failed explosively. Visual inspection revealed a crack had progressed through one member of a dual spar plate assembly at a fold pin lug hole. The remaining spar plate carried the blade load until the aircraft was landed. The helicopter main rotor blade spar fracture was analyzed by conventional and advanced computerized fractographic techniques. Digital fractographic Imaging Analysis of theoretical and actual fracture surfaces was applied for automatic detection of fatigue striation spacing. The approach offered a means of quantification of fracture features, providing for objective fractography.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048128
EISBN: 978-1-62708-225-9
...Abstract Abstract A fractograph of the failed spring was found to indicate light streaks are parallel to the wire axis. A darker depressed area was visible between the streaks and below the center of the fractograph in which distinct outlines that represent sharp corners in the depressions were...
Abstract
A fractograph of the failed spring was found to indicate light streaks are parallel to the wire axis. A darker depressed area was visible between the streaks and below the center of the fractograph in which distinct outlines that represent sharp corners in the depressions were revealed by careful examination. A hard material (mill scale) was assumed to have been impressed during drawing of the wire and was broken out during peening, leaving the depressions with sharp-bottomed corners. Spring was concluded to have failed due to a surface defect.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048423
EISBN: 978-1-62708-226-6
... of the distal fragment. Gas pores are apparent in the grain and at the grain boundaries were revealed by a transverse section. Fine parallel line structures that run diagonally through the fractograph may be slip traces were revealed by scanning electron microscopy. One of the cracks was revealed to have...
Abstract
The bone cement failed at the distal end of the prosthesis stem of femoral head prosthesis six months after implantation. A small indentation on the lateral contour of the stem was visible where the stem had broken. The degree of loosening (gap between the lateral stem contour and the bone or cement) and implant loading was revealed by the dislocation of fragments of the prosthesis. Secondary cracks that had originated at the lateral aspect of the stem were revealed by metallographic examination of a section parallel to the stem surface and perpendicular to the fracture surface of the distal fragment. Gas pores are apparent in the grain and at the grain boundaries were revealed by a transverse section. Fine parallel line structures that run diagonally through the fractograph may be slip traces were revealed by scanning electron microscopy. One of the cracks was revealed to have propagated through a larger gas pore by a ruptured gas pore. The stresses created through the fatigue process activated glide systems which served the formation of secondary cracks along glide planes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001148
EISBN: 978-1-62708-228-0
... of the pipe that did not fracture during the explosion and from piece 5-1 which contained the fracture origin site. Both pieces were found to have 0.30% carbon and 1.2% Mn with sulfur and phosphorus impurities acceptably low. Fracture mechanics analysis used in conjunction with fractographic results confirmed...
Abstract
A natural gas pipeline explosion and subsequent fire significantly altered the pipeline steel microstructure, obscuring in part the primary cause of failure, namely, coating breakdown at a local hard spot in the steel. Chemical analysis was made on pieces cut from the portion of the pipe that did not fracture during the explosion and from piece 5-1 which contained the fracture origin site. Both pieces were found to have 0.30% carbon and 1.2% Mn with sulfur and phosphorus impurities acceptably low. Fracture mechanics analysis used in conjunction with fractographic results confirmed the existence of a very hard spot in the steel prior to the explosion, which was softened significantly in the ensuing fire. This finding allowed the micromechanism leading to fracture to be identified as hydrogen embrittlement resulting from cathodic charging.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047234
EISBN: 978-1-62708-233-4
... of the fractures were through bolt holes in the mounting flange. The holes had a sharp edge and exhibited uneven wear on the inside diameter. In operation, the mounting bolts were frequently found to be loose and in at least one case broken off. A 25x scanning electron microscopy (SEM) fractograph from near...
Abstract
Several deburring drums that fractured were filled with abrasive, water, and small parts, such as roller bearing rollers, and rotated on their axis at 36 rpm. Cracks were discovered very early in the service lives of these high-chromium white iron cast structures. All of the fractures were through bolt holes in the mounting flange. The holes had a sharp edge and exhibited uneven wear on the inside diameter. In operation, the mounting bolts were frequently found to be loose and in at least one case broken off. A 25x scanning electron microscopy (SEM) fractograph from near this fracture-initiation area showed fatigue striations. No casting or metallurgical structural defects were found that could explain the failures. This evidence supports the conclusion that cracking was a result of the stress-concentration site at the bolt holes where a fatigue-initiated fracture occurred. Recommendations included that the radii be increased at the sharp corners and that lock-wiring be used to secure against bolt loosening.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0089730
EISBN: 978-1-62708-233-4
... to move with the expansion and contraction of the bellows. Investigation (visual inspection, hardness testing, and 30x fractographs) supported the conclusion that the liners failed in fatigue initiated at the intersection of the longitudinal weld forming the liner and the circumferential weld by which...
Abstract
Stainless steel liners (AISI type 321) used in bellows-type expansion joints in a duct assembly installed in a low-pressure nitrogen gas system failed in service. The duct assembly consisted of two expansion joints connected by a 32 cm (12 in.) OD pipe of ASTM A106 grade B steel. Elbows made of ASTM A234 grade B steel were attached to each end of the assembly, 180 deg apart. A 1.3 mm (0.050 in.) thick liner with an OD of 29 cm (11 in.) was welded inside each joint. The upstream ends were stable, but the downstream ends of the liners remained free, allowing the components to move with the expansion and contraction of the bellows. Investigation (visual inspection, hardness testing, and 30x fractographs) supported the conclusion that the liners failed in fatigue initiated at the intersection of the longitudinal weld forming the liner and the circumferential weld by which it attached to the bellows assembly. Recommendations included increasing the thickness of the liners from 1.3 to 1.9 mm (0.050 to 0.075 in.) in order to damp some of the stress-producing vibrations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... by metallographic and fractographic examinations. Simulations were also performed on stressed material in a suitable environment to assess the relative importance of postulated failure mechanisms. Factors contributing to this failure including assembly procedures and applied preloads, service loading...
Abstract
This paper describes the metallurgical investigation of a broken spindle used to attach an antenna to the mast of a naval vessel. Visual inspections of both failed and intact fastener assemblies were carried out both on-board ship and in the laboratory followed by metallographic and fractographic examinations. Simulations were also performed on stressed material in a suitable environment to assess the relative importance of postulated failure mechanisms. Factors contributing to this failure including assembly procedures and applied preloads, service loading and environment, and material selection and specification. The discussion considers whether this failure was an isolated incident or is likely to be a fleet-wide problem, and suggests ways to prevent reoccurrence.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001657
EISBN: 978-1-62708-227-3
... initiation had taken place in the blade trailing edge. An estimate of the crack-growth rate for the stage II fatigue fracture region coupled with the metallographic results helped to identify the final mode of the turbine blade failure. A detailed metallographic and fractographic examination of the air...
Abstract
The circumstances surrounding the in-service failure of a cast Ni-base superalloy (Alloy 713LC) second stage turbine blade and a cast and coated Co-base superalloy (MAR-M302) first stage air-cooled vane in two turbine engines used for marine application are described. An overview of a systematic approach, analyzing the nature of degeneration and failure of the failed components, utilizing conventional metallurgical techniques, is presented. The topographical features of the turbine blade fracture surface revealed a fatigue-induced crack growth pattern, where crack initiation had taken place in the blade trailing edge. An estimate of the crack-growth rate for the stage II fatigue fracture region coupled with the metallographic results helped to identify the final mode of the turbine blade failure. A detailed metallographic and fractographic examination of the air-cooled vane revealed that coating erosion in conjunction with severe hot-corrosion was responsible for crack initiation in the leading edge area.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001671
EISBN: 978-1-62708-234-1
...Abstract Abstract Important clues about the probable cause of a gun tube explosion were obtained from a fractographic and metallographic examination of the fragments. The size, distribution, and surface markings of fragments may be used to localize the explosion and deduce its intensity...
Abstract
Important clues about the probable cause of a gun tube explosion were obtained from a fractographic and metallographic examination of the fragments. The size, distribution, and surface markings of fragments may be used to localize the explosion and deduce its intensity. Microstructural features such as voids, adiabatic shear, and structural surface alterations also indicate the explosion intensity and further allow a comparison of the tube structure near and away from the explosion zone. These, and other metallurgical characteristics, are illustrated and discussed for cases of accidental and deliberately caused explosions of large caliber gun tubes.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001470
EISBN: 978-1-62708-220-4
.... Examination of the fractured surfaces showed that failure had been preceded by fatigue cracking. The material from which the dish plate was forged was a Ni-Cr-Mo steel in the oil hardened and tempered condition. Fractographic examination of the surface of the cracks showed striation markings indicative...
Abstract
One 49-in. impeller of a two-stage centrifugal air compressor disrupted without warning, causing extensive damage to the casings, the second impeller, and the driving gear box. Prior to the mishap, the machine had run normally, with no indications of abnormal vibration, temperature, or pressure. Initial failure had taken place in the floating dished inlet plate (eye plate) of the first-stage impeller. Failure occurred predominantly by tearing along the lines of rivet holes for the longer blades, these extended for practically the full radial width of the dished plate. Examination of the fractured surfaces showed that failure had been preceded by fatigue cracking. The material from which the dish plate was forged was a Ni-Cr-Mo steel in the oil hardened and tempered condition. Fractographic examination of the surface of the cracks showed striation markings indicative of the progress of fatigue cracks. Failure of the one impeller and the cracking of the others were attributed to “low-cycle high-strain fatigue” due to fluctuating circumferential (hoop) stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001686
EISBN: 978-1-62708-220-4
... A as the heat transfer fluid. Design conditions are based on annular fluid flow to cool the coil wall. NDE, metallographic and fractographic examinations were performed. Numerous, circumferentially oriented, OD initiating cracks were found near the crown for two coils near the non-fired end of the vaporizer...
Abstract
A root cause failure analysis was performed on a vaporizer coil removed from a horizontal forced circulation vaporizer. The carbon steel coil was wound in a right-hand helix with a coil centerline diameter of about 2 m. The vaporizer was gas fired and used Dowtherm A as the heat transfer fluid. Design conditions are based on annular fluid flow to cool the coil wall. NDE, metallographic and fractographic examinations were performed. Numerous, circumferentially oriented, OD initiating cracks were found near the crown for two coils near the non-fired end of the vaporizer. The cracking was confined to the inner diameter of the vaporizer coil at positions from 4:00 to 7:00. The cracking was characterized as transgranular and the fracture surface had beach marks. The failure mechanism was thermal fatigue. The heat transfer calculation predicted that dryout of the coil would occur for coils at the non-fired end of the vaporizer during low flow transients. Dryout results in rapid increase in the tube wall temperature. Thermal cycling of the coil is completed by liquid quenching resulting from resumption of normal flow rates and the return to annular flow. The probable root cause of failure was low flow transient operation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0046981
EISBN: 978-1-62708-218-1
... of the valve. Analysis (visual inspection, electron probe x-ray microanalysis, hardness testing, 4.5x fractograph) supported the conclusions that failure of the valve stem occurred by fatigue as a result of a combination of a nonuniform bending load, which caused a mild stress-concentration condition...
Abstract
The exhaust valve of a truck engine failed after 488 h of a 1000 h laboratory endurance test. The valve was made of 21-2 valve steel in the solution treated and aged condition and was faced with Stellite 12 alloy. The failure occurred by fracture of the underhead portion of the valve. Analysis (visual inspection, electron probe x-ray microanalysis, hardness testing, 4.5x fractograph) supported the conclusions that failure of the valve stem occurred by fatigue as a result of a combination of a nonuniform bending load, which caused a mild stress-concentration condition, and a high operating temperature in a corrosive environment. When the microstructure near the stem surface was examined, it was apparent that carbide spheroidization had occurred. Also, there was a coarsening of the carbide network within the austenite grains. The microstructure indicated that the underhead region of the valve was heated to about 930 deg C (1700 deg F) during operation. The cause of fatigue fracture, therefore, was a combination of non-uniform bending loads and overheating. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046737
EISBN: 978-1-62708-229-7
... (manganese bronze). The bolts and nuts were made of copper alloy C46400 (naval brass, uninhibited). The water that was circulated through the tower had high concentrations of oxygen, carbon dioxide, and chloramines. Analysis (visual inspection, bend tests, fractographs, 50x unetched micrographs, 100x...
Abstract
After 14 months of service, cracks were discovered in castings and bolts used to fasten together braces, posts, and other structural members of a cooling tower, where they were subjected to externally applied stresses. The castings were made of copper alloys C86200 and C86300 (manganese bronze). The bolts and nuts were made of copper alloy C46400 (naval brass, uninhibited). The water that was circulated through the tower had high concentrations of oxygen, carbon dioxide, and chloramines. Analysis (visual inspection, bend tests, fractographs, 50x unetched micrographs, 100x micrographs etched with H4OH, and 500x micrographs) supported the conclusions that the castings and bolts failed by SCC caused by the combined effects of dezincification damage and applied stresses. Recommendations included replacing the castings with copper alloy C87200 (cast silicon bronze) castings. Replacement bolts and nuts should be made from copper alloy C65100 or C65500 (wrought silicon bronze).
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0089663
EISBN: 978-1-62708-229-7
...-porosity defect was observed adjoining a tapped hole. A second, much larger cavity was also detected. Investigation (visual inspection and 7500x SEM fractographs) supported the conclusions that failure occurred through a zone of structural weakness that was caused by internal casting defects and a tapped...
Abstract
A crack was discovered in a cast steel (ASTM A 356, grade 6) steam turbine casing during normal overhaul of the turbine. The mechanical properties of the casting all exceeded the requirements of the specification. When the fracture surface was examined visually, an internal-porosity defect was observed adjoining a tapped hole. A second, much larger cavity was also detected. Investigation (visual inspection and 7500x SEM fractographs) supported the conclusions that failure occurred through a zone of structural weakness that was caused by internal casting defects and a tapped hole. The combination of cyclic loading (thermal fatigue), an aggressive service environment (steam), and internal defects resulted in gradual crack propagation, which was, at times, intergranular-with or without corrosive attack-and, at other times, was transgranular.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046874
EISBN: 978-1-62708-229-7
... been subjected to mildly fluctuating stresses. Analysis (visual inspection, 0.3x photographs, 0.7x light fractographs, and metallographic examination) supported the conclusions that the spring failed by corrosion fatigue that resulted from application of a fluctuating load in the presence of a moisture...
Abstract
The safety valve on a steam turbogenerator was set to open when the steam pressure reaches 2400 kPa (348 psi). The pressure had not exceeded 1790 kPa (260 psi) when the safety-valve spring shattered into 12 pieces. The steam temperature in the line varied from about 330 to 400 deg C (625 to 750 deg F). Because the spring was enclosed and mounted above the valve, its temperature was probably slightly lower. The 195 mm (7 in.) OD x 305 mm (12 in.) long spring was made from a 35 mm (1 in.) diam rod of H21 hot-work tool steel. It had been in service for about four years and had been subjected to mildly fluctuating stresses. Analysis (visual inspection, 0.3x photographs, 0.7x light fractographs, and metallographic examination) supported the conclusions that the spring failed by corrosion fatigue that resulted from application of a fluctuating load in the presence of a moisture-laden atmosphere. Recommendations included replacing all safety valves in the system with new open-top valves that had shot-peened and galvanized steel springs. Alternatively, the valve springs could be made from a corrosion-resistant metal-for example, a 300 series austenitic stainless steel or a nickel-base alloy, such as Hastelloy B or C.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046963
EISBN: 978-1-62708-229-7
... to a depth of 6.4 mm into the web section. Analysis (visual inspection, 5000 and 10,000x TEM fractographs, chemical analysis, and 9x metallographic examination) supported the conclusions that cracking on the forward rim of the spacer occurred in fatigue that initiated on the forward rim face...
Abstract
A turbine spacer made of AMS 5661 alloy (Incoloy 901; composition: Fe-43Ni-13Cr-6Mo-2.5Ti) was removed from service because of a crack in the forward side of the radial rim. The crack extended axially for a distance of 16 mm across the spacer rim; radially, it extended to a depth of 6.4 mm into the web section. Analysis (visual inspection, 5000 and 10,000x TEM fractographs, chemical analysis, and 9x metallographic examination) supported the conclusions that cracking on the forward rim of the spacer occurred in fatigue that initiated on the forward rim face and that progressed into the rim and web areas. Because there was no apparent metallurgical cause for the cracking, the problem was assigned to engineering.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090881
EISBN: 978-1-62708-229-7
... inspection, SEM fractographs, and micrographs) showed evidence of IGSCC initiating at the OD and IGA under ridgelike deposits that were analyzed and found to be slightly alkaline to very alkaline (caustic) in nature. Crack oxide analysis indicated sulfate levels in excess of expected values. The analysis...
Abstract
A power plant using two steam generators (vertical U-tube and shell heat exchangers, approximately 21 m (68 ft) high with a steam drum diameter of 6 m (20 ft)) experienced a steam generator tube rupture. Each steam generator contained 11,012 Inconel alloy 600 (nickel-base alloy) tubes measuring 19 mm OD, nominal wall thickness of 1.0 mm (0.042 in.), and average length of 18 m (57.75 ft). The original operating temperature of the reactor coolant was 328 deg C (621 deg F). A tube removal effort was conducted following the tube rupture event. Investigation (visual inspection, SEM fractographs, and micrographs) showed evidence of IGSCC initiating at the OD and IGA under ridgelike deposits that were analyzed and found to be slightly alkaline to very alkaline (caustic) in nature. Crack oxide analysis indicated sulfate levels in excess of expected values. The analysis supported the conclusion that that the deposits formed at locations that experienced steam blanketing or dryout at the higher levels of the steam generators. Recommendations included steam generator water-chemistry controls, chemical cleaning, and reduction of the primary reactor coolant system temperature.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091028
EISBN: 978-1-62708-229-7
... inspection, 2% nital etched 297x images, chemical analysis, and SEM fractographs) supported the conclusion that the superheater tube failed as a result of long-term overheating. Substantial creep damage reduced the strength of the tube to the point that overload failure occurred. No recommendations were made...
Abstract
Failure occurred in a steel superheater tube in a power plant. The tube was specified as ASTM A 213 grade T 22, and the reported operating conditions were 13 MPa (1900 psi) at 482 deg C (900 deg F). The tube carried superheated steam and was coal fired. Investigation (visual inspection, 2% nital etched 297x images, chemical analysis, and SEM fractographs) supported the conclusion that the superheater tube failed as a result of long-term overheating. Substantial creep damage reduced the strength of the tube to the point that overload failure occurred. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001594
EISBN: 978-1-62708-229-7
... Electric and Southwest Research Institute are presented regarding the frequency of failures, failure locations, and the potential causes. The topics addressed include 1) metallurgical and fractographic features of fatigue cracks at the weld toe and weld root; 2) factors that are associated with fatigue...
Abstract
Nuclear power plants typically experience two or three high-cycle fatigue failures of stainless steel socket-welded connections in small bore piping during each plant-year of operation. This paper discusses fatigue-induced failure in socket-welded joints and the strategy Texas Utilities Electric Company (TU Electric) has implemented in response to these failures. High-cycle fatigue is invisible to proven commercial nondestructive evaluation (NDE) methods during crack initiation and the initial phases of crack growth. Under a constant applied stress, cracks grow at accelerating rates, which means cracks extend from a detectable size to a through-wall crack in a relatively short time. When fatigue cracks grow large enough to be visible to NDE, it is likely that the component is near the end of its useful life. TU Electric has determined that an inspection program designed to detect a crack prior to the component leaking would involve frequent inspections at a given location and that the cost of the inspection program would far exceed the benefits of avoiding a leak. Instead, TU Electric locates these cracks by visually monitoring for leaks. Field experience with fatigue-induced cracks in socket-welded joints has confirmed that visual monitoring does detect cracks in a timely manner, that these cracks do not result in catastrophic failures, and that the plant can be safely shut down in spite of a leaking socket-welded joint in a small bore pipe. Historical data from TU Electric and Southwest Research Institute are presented regarding the frequency of failures, failure locations, and the potential causes. The topics addressed include 1) metallurgical and fractographic features of fatigue cracks at the weld toe and weld root; 2) factors that are associated with fatigue, such as mechanical vibration, internal pulsation, joint design, and welding workmanship; and 3) implications of a leaking crack on plant safety. TU Electric has implemented the use of modified welding techniques for the fabrication of socket-welded joints that are expected to improve their ability to tolerate fatigue.