1-20 of 132 Search Results for

forging equipment selection

Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001761
EISBN: 978-1-62708-241-9
... Abstract An investigation of a damaged crankshaft from a horizontal, six-cylinder, in-line diesel engine of a public bus was conducted after several failure cases were reported by the bus company. All crankshafts were made from forged and nitrided steel. Each crankshaft was sent for grinding...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001262
EISBN: 978-1-62708-224-2
... Selected References • Jamieson F.L. , Failures of Lifting Equipment , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 1986 , p 514 – 528 10.31399/asm.hb.v11.a0001811 • Failures Related to Metalworking , Failure Analysis and Prevention , Vol 11...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001005
EISBN: 978-1-62708-215-0
..., revealed that fatigue crack initiation occurred from the tip of oxide scale inclusions forged into the U-shaped arm at the inside radius. Corrective action involved redesigning the steering arm to increase the minimum forging radius and reduce the stress level at the inner-bend radius, and reducing...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... is easily recognized; excessive wear can usually be corrected by changing the material or its processing. However, the complete elimination of wear of lifting equipment may require selection of a material that is subject to brittle fracture—an alternative that may well be unacceptable. Failure Origins...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001845
EISBN: 978-1-62708-241-9
.... The investigation results suggest that the root cause of failure was a forging lap that occurred during manufacturing. Precracks induced by the forging defect and the influence of preload stress (due to bolt torque) caused the premature failure. cable clamps brittle fracture forging overlap copper alloy...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... recognized most of the time; excessive wear can usually be corrected by changing the material or its processing. However, the complete elimination of wear of lifting equipment may require selection of a harder material that is subject to brittle fracture—an alternative that may well be unacceptable...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001453
EISBN: 978-1-62708-224-2
... wired to the component. Selected References Selected References • Jamieson F.L. , Failures of Lifting Equipment , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 1986 , p 514 – 528 10.31399/asm.hb.v11.a0001811 • Becker W.T. and McGarry...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001039
EISBN: 978-1-62708-214-3
... Abstract The 4140 steel steering spindle on a tricycle agricultural field chemical applicator failed, causing the loss of the front wheel and overturn of the vehicle. The spindle was a solid 120 mm (4.75 in.) diam forging. It had been machined to 115 mm (4.5 in.) in diameter to fit tightly...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... in the design of any pressure vessel is to select the proper design code based on its intended use. For example, a pressure vessel may be a power or heating boiler, a nuclear reactor chamber, a chemical process chamber, a hydrostatic test chamber used to test underwater equipment, or an aircraft fuselage...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
..., a chemical process chamber, a hydrostatic test chamber used to test underwater equipment, or a pressure vessel for human occupancy. Once the intended use is identified, the appropriate design code can be selected. For example, pressure vessels use codes provided by many organizations and certifying agencies...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001450
EISBN: 978-1-62708-231-0
... that was equipped with an automatic control to maintain the air-gas ratio at such a value that reducing conditions were obviated. It was also stated that the rivets had been inserted from the fireside, therefore the original heads would be on that side of the box. Microscopical examination revealed that while...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001362
EISBN: 978-1-62708-215-0
... The steam turbine disc was fabricated from an A470 Class 4 alloy steel forging, which is a common steam turbine disc material. Selection of Specimens Approximately one-third of the disc was available for examination and sectioning. Visual Examination of General Physical Features The steam...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001161
EISBN: 978-1-62708-220-4
... to be completely martensitic. Thus, the failure was due to hardening of the base material during welding, and recommendation was made to temper or anneal the welded regions to reduce the effects of hydrogen under pressure. Ammonia Chemical processing equipment Heat exchangers Post heating Welded joints...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001172
EISBN: 978-1-62708-220-4
.... Ammonia Chemical processing equipment Decarburization Surface defects Nickel steel St 55.25 Hydrogen damage and embrittlement Unalloyed steels and the pure nickel steels frequently used in the past for highly stressed forgings are attacked by hydrogen under high pressure. The attack causes...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006835
EISBN: 978-1-62708-329-4
... of wrought products. The article addresses the types of flaws or defects that can be introduced during the steel forging process itself, including defects originating in the ingot-casting process. Defects found in nonferrous forgings—titanium, aluminum, and copper and copper alloys—also are covered...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
..., materials selection, and use problems: for example, underfill, part distortion, and poor dimensional control; tool overload and breakage; excessive tool wear; high initial investment due to equipment cost; poor material use and high scrap loss The movement of metal during these processes, whether...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001079
EISBN: 978-1-62708-214-3
.... The material was found to be a typical Cr-Mo-V steel, and it met the property requirements. No evidence of temper embrittlement was found. The analyses showed that the observed flaws were present in the original forging and attributed them to lack of ingot consolidation. A series of actions, including...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003500
EISBN: 978-1-62708-180-1
... broadly, from maintenance training issues, to marginal equipment reliability, to business systems conflicts, to policy inconsistencies, to poor working conditions on the shop floor. When a problem occurs, the responsible organization will analyze the problem to determine the cause and solve it. However...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001597
EISBN: 978-1-62708-236-5
... Abstract This case study involves two continuously cast steel crankshaft failures. Three parties performed their own failure analyses: (1) the engine manufacturer responsible for component design, specification, and application; (2) the steel supplier and forging supplier responsible for making...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006753
EISBN: 978-1-62708-295-2
... levels, followed by a discussion on the role of failure analysis and the appreciation of quality assurance and user expectations. Systematic analysis of equipment failures reveals physical root causes that fall into one of four fundamental categories: design, manufacturing/installation, service...