Skip Nav Destination
Close Modal
By
Cassio Barbosa, Simone Kessler de Barros, Ibrahim de Cerqueira Abud, Joneo Lopes do Nascimento, Sheyla Santana de Carvalho
Search Results for
fluxing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 96 Search Results for
fluxing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Failure of Inconel 600 Thin-Walled Tubes Due to Nitriding
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Schematic diagram of a self-powered flux detector assembly: (a) relative positions of emitter coils; distances are given from the outboard face of the shield plug (metres); and, (b) assembly in the vicinity of the transition pieces between detector coils.
More
Image
Published: 01 December 2019
Fig. 7 Sample 2 (fracture area): fractured inner wall, exposed to hot gas flux. Microstructure: martensite, bainite, and ferrite with carbide precipitation. Pitting corrosion was also observed
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047745
EISBN: 978-1-62708-235-8
... Abstract A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux, failed at the brazed joint when subjected to mild handling before installation, after being stored for about two years. It was revealed by visual examination of the failed braze...
Abstract
A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux, failed at the brazed joint when subjected to mild handling before installation, after being stored for about two years. It was revealed by visual examination of the failed braze that the filler metal had not covered all mating surfaces. Lack of a metallurgical bond between the brazing alloy and stainless steel and instead mechanical bonding of the filler metal to an oxide layer on the stainless steel surface was revealed by examination of the broken joint at the cup. It was indicated by the thickness of the oxide layer that the steel surface was not protected from oxidation by the flux during torch heating. It was concluded that the failure was caused by lack of a metallurgical bond between the brazing alloy and the stainless steel. Components made of 347 stainless steel (better brazeability) brazed with a larger torch tip (wider heat distribution) and AWS type 3B flux (better filler-metal flow) were recommended for radar coolant-system assembly.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001109
EISBN: 978-1-62708-214-3
... Abstract Grate bars in the traveling grate indurators in several taconite processing units suffered excessive corrosion following a conversion from acid to fluxed pellet production procedures. The campaign life of the HH grade cast stainless steel bars was reduced from more than 7 years...
Abstract
Grate bars in the traveling grate indurators in several taconite processing units suffered excessive corrosion following a conversion from acid to fluxed pellet production procedures. The campaign life of the HH grade cast stainless steel bars was reduced from more than 7 years to approximately 9 months. Several corroded grate bars were examined metallographically and by electron microscopy to determine the causes of the accelerated corrosion. Chemical and X-ray diffraction analyses were also conducted, along with simulation tests to assess the role of alkali chlorides in the corrosion process. The basic cause of degradation was found to be hot corrosion caused by the deposition of alkali sulfates and chlorides. However this degradation may have been aggravated by thermal cycling and abrasion. The source of the salt was impurities in the flux. Two potential solutions were proposed: modification of the processing parameters to reduce the salt deposition and / or change of bar materials to a more resistant alloy.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047749
EISBN: 978-1-62708-235-8
... surface of the tube were identified as fluorides from the brazing flux by chemical analysis. The nature of the crack, potential for corrosion due to residual fluorides and residual swaging stress in the tube prior to brazing, confirmed that failure of the tube end was due to stress-corrosion cracking...
Abstract
A type 321 stainless steel (AMS 5570) pressure-tube assembly that contained a brazed reinforcing liner leaked during a pressure test. Fluorescent liquid-penetrant inspection revealed a circumferential crack extended approximately 180 deg around the tube parallel to the fillet of the brazed joint. The presence of multiple origin cracks was indicated on the inside surface of a fractured portion of the crack surface. The cracks had originated adjacent to the braze joining the tube and the reinforcing liner and propagated through the wall to the outer surface. The residues on the inner surface of the tube were identified as fluorides from the brazing flux by chemical analysis. The nature of the crack, potential for corrosion due to residual fluorides and residual swaging stress in the tube prior to brazing, confirmed that failure of the tube end was due to stress-corrosion cracking. Stress relief treatment of tube before brazing and immediate cleaning of brazing residual fluorides was recommended to avoid failure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001397
EISBN: 978-1-62708-235-8
... cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux...
Abstract
Banding wires of the rotor of an 1800 hp motor were renewed following replacement of the banding rings. After about six months of service, a breakdown occurred due to bursting of the banding wires in several places. The 0.064 in. diam wire was nonmagnetic and of the 18/8 Cr-Ni type of austenitic stainless steel. The fractures were short and partially crystalline, with no evidence of slowly developing cracks of the fatigue type. Microscopical examination of sections taken through the fractures showed the cracking to be of the multiple branching type. Because the material was in the heavily cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux during the soldering operation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001396
EISBN: 978-1-62708-229-7
... attack has taken place at butt welds in water-wall tubes, particularly those situated in zones of high heat flux. To prevent on-load corrosion an adequate flow of water must occur within the tubes in the susceptible regions of a boiler. Corrosion products and suspended matter from the pre-boiler...
Abstract
The phenomenon of on-load corrosion is directly associated with the production of magnetite on the water-side surface of boiler tubes. On-load corrosion may first be manifested by the sudden, violent rupture of a boiler tube, such failures being found to occur predominantly on the fire-side surface of tubes situated in zones exposed to radiant heat where high rates of heat transfer pertain. In most instances, a large number of adjacent tubes are found to have suffered, the affected zone frequently extending in a horizontal band across the boiler. In some instances, pronounced local attack has taken place at butt welds in water-wall tubes, particularly those situated in zones of high heat flux. To prevent on-load corrosion an adequate flow of water must occur within the tubes in the susceptible regions of a boiler. Corrosion products and suspended matter from the pre-boiler equipment should be prevented from entering the boiler itself. Also, it is good practice to reduce as far as possible the intrusion of weld flash and other impedances to smooth flow within the boiler tubes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001676
EISBN: 978-1-62708-229-7
... Abstract The self-powered flux detectors used in some nuclear reactors are Pt or V-cored co-axial cables with MgO as an insulator and Inconel 600 as the outer sheath material. The detectors are designed to operate in a He atmosphere; to maximize the conduction of heat (generated from...
Abstract
The self-powered flux detectors used in some nuclear reactors are Pt or V-cored co-axial cables with MgO as an insulator and Inconel 600 as the outer sheath material. The detectors are designed to operate in a He atmosphere; to maximize the conduction of heat (generated from the interaction with gamma radiation) and to prevent corrosion. A number of failures have occurred over the years because of a loss of the He cover gas in the assembly. This has resulted in either acid attack on the Inconel 600 sheath in a wet environment or gaseous corrosion in a dry environment. In the latter case, nitriding and embrittlement occurred at temperatures as low as 300 to 400 deg C (determined from an examination of the oxidation of the Zircaloy-2 carrier rod on which the detectors were mounted). Recent results are described and discussed in terms of the oxidation and nitriding kinetics of Zircaloy-2 and Inconel 600, respectively.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001003
EISBN: 978-1-62708-227-3
... flux. The embrittlement was shown to be caused by the flow of corrosion generated hydrogen which converted the cementite to methane which nucleated voids in the steel. A thermodynamic estimate indicated that a small amount of chromium would stabilize the carbides against decomposition by hydrogen...
Abstract
Gross wastage and embrittlement were observed in plain carbon steel desuperheaters in five new Naval power plants. The gross wastage could be duplicated in laboratory bomb tests using sodium hydroxide solutions and was concluded to be caused by free caustic concentrated by high heat flux. The embrittlement was shown to be caused by the flow of corrosion generated hydrogen which converted the cementite to methane which nucleated voids in the steel. A thermodynamic estimate indicated that a small amount of chromium would stabilize the carbides against decomposition by hydrogen in this temperature range, and laboratory tests with 2-14% Cr steel verified this.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047753
EISBN: 978-1-62708-235-8
... was revealed by visual examination. Fatigue marks, emanating from multiple crack origins on the inside surface of the housing at the brazed joint were revealed by further study of the fracture. A poor metallurgical bond was confirmed by the presence of large irregular voids, flux trapped braze metal...
Abstract
A pressure probe assembly comprised of type 347 stainless steel housing, brazed with AMS 4772D filler metal to the pressure probe, failed due to detachment of a rectangular segment from the housing. The presence of a large brazing metal devoid region in the pressure probe-housing joint was revealed by visual examination. Fatigue marks, emanating from multiple crack origins on the inside surface of the housing at the brazed joint were revealed by further study of the fracture. A poor metallurgical bond was confirmed by the presence of large irregular voids, flux trapped braze metal and separation between braze and housing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047545
EISBN: 978-1-62708-236-5
... reflectors, indicating the presence of slag inclusions and porosity. A low-carbon steel flux-cored filler metal was used in repair welding the crankshaft, without any preweld or postweld heating. This resulted in the formation of martensite in the HAZ. The repair weld failed by brittle fracture, which...
Abstract
The AISI 1080 steel crankshaft of a large-capacity double-action stamping press broke in service and was repair welded. Shortly after the crankshaft was returned to service, the repair weld fractured. The repair-weld fracture was examined ultrasonically which revealed many internal reflectors, indicating the presence of slag inclusions and porosity. A low-carbon steel flux-cored filler metal was used in repair welding the crankshaft, without any preweld or postweld heating. This resulted in the formation of martensite in the HAZ. The repair weld failed by brittle fracture, which was attributed to the combination of weld porosity, many slag inclusions and the formation of brittle martensite in the HAZ. A new repair weld was made using an E312 stainless steel electrode, which provides a weld deposit that contains considerable ferrite to prevent hot cracking. Before welding, the crankshaft was preheated to a temperature above which martensite would form. After completion, the weld was covered with an asbestos blanket, and heating was continued for 24 h. During the next 24 h, the temperature was slowly lowered. The result was a crack-free weld.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047423
EISBN: 978-1-62708-236-5
... revealed a fatigue crack through about one-third of the cross section. A secondary fatigue crack, perpendicular to the main fracture, was also observed. The composition of the weld deposit corresponded to a heat treatable flux-cored arc welding filler material that was known to have been used for repair...
Abstract
A large shackle used in operating a dragline bucket failed in service. The shackle was made of a cast low-alloy steel (similar to AISI 4320) heat treated to a hardness of 415 BN. The shackle failed by fracturing through the load-bearing region. Examination of the fracture surface revealed a fatigue crack through about one-third of the cross section. A secondary fatigue crack, perpendicular to the main fracture, was also observed. The composition of the weld deposit corresponded to a heat treatable flux-cored arc welding filler material that was known to have been used for repair welding of these products. This shackle failed because of fatigue initiating at hydrogen cracks that had occurred in the HAZ of a repair weld. The weld had been made with a heat-treatable filler material, and a full postweld heat treatment had been performed. However, a low-hydrogen filler material had not been used to make the weld. Repair welds in high-strength steel castings should always be made with low-hydrogen filler materials.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001834
EISBN: 978-1-62708-241-9
... corrosive flux accelerated the corrosion on the outer wall. Microstructure degradation and the corrosion characteristics observed indicate that the tubes failed primarily because of overheating, which is confirmed by calculations. References References 1. Gabrielli F. , Overview of water...
Abstract
The failure of T12 reheater tubes that had been in service for only 3000 h was investigated. The thickness of the tubes was visibly reduced by heavy oxidation corrosion on the inner and outer walls. The original pearlite substrate completely decomposed. Uniform oxide scale observed on the inner wall showed obvious vapor oxidation corrosion characteristics. Corrosion originated in the grain boundary, and selective oxidation occurred due to ion diffusion in the substrate. The layered oxide scale on the inner wall is related to the different diffusion rates for different cations. Exposure to high temperature corrosive flux accelerated the corrosion on the outer wall. Microstructure degradation and the corrosion characteristics observed indicate that the tubes failed primarily because of overheating, which is confirmed by calculations.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001765
EISBN: 978-1-62708-241-9
... plates was to be used as a remedial measure. However, during the sand blasting, holes and deep pitting were observed on the bottom plates. On-site visual inspection, magnetic flux leakage (MFL) inspection, ultrasonic testing (UT), and evaluation of the external cathodic protection (CP) system were used...
Abstract
This paper describes the investigation of a corrosion failure of bottom plates on an aboveground tank used for the storage of potable water. The tank was internally inspected for the first time after six years of service. Paint blisters and rust spots were observed on the bottom plates and first to third course shell plates. Sand blasting and repainting of the bottom plates and first course shell plates was to be used as a remedial measure. However, during the sand blasting, holes and deep pitting were observed on the bottom plates. On-site visual inspection, magnetic flux leakage (MFL) inspection, ultrasonic testing (UT), and evaluation of the external cathodic protection (CP) system were used in the failure analysis. The corrosion products were analyzed using energy-dispersive X-ray analysis (EDAX). The failure is attributed to the ingress of water and its impoundment under the tank bottom along the periphery inside the ring wall and failure of water side epoxy coating. Various measures to prevent such failures in the future are recommended.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001032
EISBN: 978-1-62708-214-3
... the heat flux, redesigning the wick, and reducing the oxygen content of the sodium. Engine components Evaporators Fins Solar power generation Space flight Stirling engines 316 UNS S31600 Inconel 600 UNS N06600 Intergranular fracture Intergranular corrosion High-temperature corrosion...
Abstract
A Stirling engine heat pipe failed after only 2h of operation in a test situation. Cracking at the leading edge of an evaporator fin allowed air to enter the system and react with the sodium coolant. The fin was fabricated from 0.8 mm (0.03 in.) thick Inconel 600 sheet. The wick material was type 316 stainless steel. Macro- and microexaminations of specimens from the failed heat pipe were conducted. The fin cracking was caused by overheating that produced intergranular corrosion in both the fin and the wick. Recommendations for alleviating the corrosion problem included reducing the heat flux, redesigning the wick, and reducing the oxygen content of the sodium.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001330
EISBN: 978-1-62708-215-0
... experience a temperature peak in excess of 727 deg C (1340 deg F). The long-term overheating conditions could have been the result of excessive heat flux and /or inadequate steam flow. In addition, the entire superheater bank should have been upgraded to Grade 722 material at the time of retubing...
Abstract
Two superheater tubes from a 6.2 MPa (900 psig) boiler failed in service because of creep rupture. One tube was carbon steel and the other was carbon steel welded to ASTM A213 Grade T22 (2.25Cr-1.0Mo) tubing. The failure in the welded tube occurred in the carbon steel section. Portions of the superheater were retubed five years previously with Grade 722 material. The failures indicated that tubes were exposed to long-term overheating conditions. While the carbon steel tube did not experience temperatures above the lower transformation temperature 727 deg C (1340 deg F), the welded tube did experience a temperature peak in excess of 727 deg C (1340 deg F). The long-term overheating conditions could have been the result of excessive heat flux and /or inadequate steam flow. In addition, the entire superheater bank should have been upgraded to Grade 722 material at the time of retubing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001791
EISBN: 978-1-62708-241-9
... and pearlite Fig. 4 Sample 2 (region of fracture/not severe oxidation). Outer wall of the side which was not exposed to hot gas flux. Microstructure: ferrite and pearlite Fig. 5 Sample 2: inner wall, opposed to the fractured side, exposed to the hot gas flux after fracture. Microstructure...
Abstract
A pipe in the lateral wall of a boiler powering an aircraft carrier flat-top boat failed during a test at sea. The pipe was made from ASTM 192 steel, an adequate material for the application. Microstructural analysis along with equipment operating records provided valuable insight into what caused the pipe to rupture. Although the pipe had been replaced just 50 h before the accident, the analysis revealed incrustations and corrosion pits on the inner walls and oxidation on the outer walls. Microstructural changes were also observed, indicating that the steel was exposed to high temperatures. The combined effect of pitting, incrustations, and phase transformations caused the pipe to rupture.
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 5 Variation of fluid temperature and tube-wall temperature for different values of heat flux
More
Image
Published: 01 December 2019
Fig. 4 Sample 2 (region of fracture/not severe oxidation). Outer wall of the side which was not exposed to hot gas flux. Microstructure: ferrite and pearlite
More
1