Skip Nav Destination
Close Modal
By
Y. C. Lin, F. V. Ellis
By
Peter F. Ellis, II
By
J.H. Sanders, G.A. Jerman
By
Guobin Zhang, Yusen Wang, Shinian Zhang, Chunhe Liu
By
Samuel J. Brown, Edward V. Bravenec
By
Paresh Haribhakti, P.B. Joshi
By
Wendy L. Weiss, Brian McClave
Search Results for
fluid flow
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 149
Search Results for fluid flow
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failure Analysis for a Carbon Steel Vaporizer Coil
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001686
EISBN: 978-1-62708-220-4
... transfer fluid. Design conditions are based on annular fluid flow to cool the coil wall. NDE, metallographic and fractographic examinations were performed. Numerous, circumferentially oriented, OD initiating cracks were found near the crown for two coils near the non-fired end of the vaporizer...
Abstract
A root cause failure analysis was performed on a vaporizer coil removed from a horizontal forced circulation vaporizer. The carbon steel coil was wound in a right-hand helix with a coil centerline diameter of about 2 m. The vaporizer was gas fired and used Dowtherm A as the heat transfer fluid. Design conditions are based on annular fluid flow to cool the coil wall. NDE, metallographic and fractographic examinations were performed. Numerous, circumferentially oriented, OD initiating cracks were found near the crown for two coils near the non-fired end of the vaporizer. The cracking was confined to the inner diameter of the vaporizer coil at positions from 4:00 to 7:00. The cracking was characterized as transgranular and the fracture surface had beach marks. The failure mechanism was thermal fatigue. The heat transfer calculation predicted that dryout of the coil would occur for coils at the non-fired end of the vaporizer during low flow transients. Dryout results in rapid increase in the tube wall temperature. Thermal cycling of the coil is completed by liquid quenching resulting from resumption of normal flow rates and the return to annular flow. The probable root cause of failure was low flow transient operation.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001314
EISBN: 978-1-62708-215-0
... the allowable operating temperature for the fluid. The probable cause for failure is thermal fatigue due to the localized overheating. Flow conditions inside the tubing should be reexamined to ensure suitable conditions for annular fluid flow. Cracking (fracturing) Heat exchangers Mechanical properties...
Abstract
A gas-fired, ASTM A-106 Grade B carbon steel vaporizer failed on three different occasions during attempts to bring the vaporizer on line. Dye penetrant examination indicated the presence of multiple packets of ductile cracks on the inside of the coil radius at the bottom of the horizontal axis coils. Visual examination of the inside of the tubing indicated the presence of a carbonaceous deposit resulting from decomposition of the heat-exchanging fluid. Subsequent metallographic examination and microhardness testing indicated that the steel was heated to a temperature above the allowable operating temperature for the fluid. The probable cause for failure is thermal fatigue due to the localized overheating. Flow conditions inside the tubing should be reexamined to ensure suitable conditions for annular fluid flow.
Book Chapter
Failure of a Fan Support Casting
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047441
EISBN: 978-1-62708-234-1
... with the classic spongy appearance of cavitation. Two changes were proposed: streamlining the part to avoid abrupt changes in fluid flow; and a change in alloy to a more corrosion-resistant material (304 or preferably 316) to increase the tenacity of protective films. Cavitation Design Supports 8620...
Abstract
A fan support casting failed unexpectedly while running at 1800 rpm in pulp at 65 deg C (150 deg F). The leading edge of the blade exhibited deep spongy holes leading to reduced section and finally to fracture of the part when the remaining section size was insufficient to support the load. Analysis showed the support casting to be a standard 8620 type composition with a hardness of 311 HRB. The design of the casting was not streamlined. There were several square corners present where great pressure differences could be generated. This was a case of erosion-corrosion with the classic spongy appearance of cavitation. Two changes were proposed: streamlining the part to avoid abrupt changes in fluid flow; and a change in alloy to a more corrosion-resistant material (304 or preferably 316) to increase the tenacity of protective films.
Book Chapter
Brittle Fracture of a Rephosphorized, Resulfurized Steel Check-Valve Poppet
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0045992
EISBN: 978-1-62708-225-9
... Abstract After two weeks of operation, a poppet used in a check valve to control fluid flow and with a maximum operating pressure of 24 MPa (3.5 ksi) failed during operation. Specifications required that the part be made of 1213 or 1215 rephosphorized and resulfurized steel. The poppet...
Abstract
After two weeks of operation, a poppet used in a check valve to control fluid flow and with a maximum operating pressure of 24 MPa (3.5 ksi) failed during operation. Specifications required that the part be made of 1213 or 1215 rephosphorized and resulfurized steel. The poppet was specified to be case hardened to 55 to 60 HRC, with a case depth of 0.6 to 0.9 mm (0.025 to 0.035 in.); the hardness of the mating valve seat was 40 HRC. Analysis showed that the fracture occurred through two 8 mm (0.313 in.) diam holes at the narrowest section of the poppet. The valve continued to operate after it broke, which resulted in extensive loss of metal between the holes. 80x micrograph and 4x macrograph of a 5% nital etched longitudinal section, and chemical analyses showed the poppet did fit 1213 or 1215 specs. However, hardness measurements showed surface hardness was excessive-61 to 65 HRC instead of the specified 55 to 60 HRC. Thus, the poppet failed by brittle fracture, and cracking occurred across nonmetallic inclusions. Recommendation was to redesign the valve with the poppet material changed to 4140 steel, hardened, and tempered to 50 to 55 HRC.
Book Chapter
Fatigue Failure of Carbon-Molybdenum Steel Boiler Tubes Caused by Vibration
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0048350
EISBN: 978-1-62708-227-3
... the tubes was changed to reduce the amount of restraint and the strain concentration. Constraining Fluid flow Strain Supports Carbon-molybdenum steel Fatigue fracture Tubes in a marine boiler on a new ship failed after brief service lives. Circumferential brittle cracking occurred...
Abstract
Tubes in a marine boiler on a new ship failed after brief service lives. Circumferential brittle cracking was found to occur in the carbon-molybdenum steel tubes near the points where the tubes were attached to the steam drum. Fatigue striations were revealed by examination of fracture surfaces by electron microscopy at high magnification. Fatigue failures were concluded to be caused by vibrations resulting from normal steam flow at high steam demand. Too rigid support near the steam drum resulted in concentration of vibratory strain in the regions of failure. The method of supporting the tubes was changed to reduce the amount of restraint and the strain concentration.
Image
(a) Schematic representation of the production system. (b) Location of the ...
Available to Purchase
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 69 (a) Schematic representation of the production system. (b) Location of the pit plug and metal loss and transition of laminar fluid flow to turbulent flow
More
Book Chapter
Failure of Coiled Tubing in a Drilling Application
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051866
EISBN: 978-1-62708-228-0
... fluids or modifying the fluids in the tubing or purging by flowing dry nitrogen to dry it out. Coiled steel Drilling Pitting (corrosion) Tubes Structural steel tubing Corrosion fatigue Coiled tubing is used in drilling operations because it eliminates the need for a drilling rig...
Abstract
Coiled tubing used in drilling operations failed at the halfway point of its estimated fatigue life. The failure was found to be transverse to the tubing axis. Visual examination revealed a flat fracture surface extending 13 mm with the rest of the fracture showing shear lips indicative of tensile overload. The flat portion of the fracture surface was typical of fatigue cracking. Fatigue striations were revealed by SEM. Corrosion pitting on the tubing ID from which the fatigue crack had propagated were observed on closer examination. The corrosion pitting was speculated to have occurred when the tubing was idle and fluids accumulated at the bottom of the tubing wraps. The coiled tubing was concluded to have failed prematurely due to low-cycle fatigue initiated at corrosion pitting sites. Corrosive attack on the coiled tubing was recommended to be reduced by completely removing fluids or modifying the fluids in the tubing or purging by flowing dry nitrogen to dry it out.
Book Chapter
Repeated Failure of Rubber Slurry Pump Impellers and Liners in a Flue Gas Desulfurization Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001087
EISBN: 978-1-62708-214-3
... and open rotor (impeller). Both the case and the ductile iron rotor core were covered by natural rubber. Analyses conducted included surface examination of wear patterns, chemical analysis of materials, measurement of mechanical properties, and in-place flow tests. It was determined that the proximate...
Abstract
The repeated failure of rubber-covered rotors and volute liners in a flue gas desulfurization system after conversion from lime slurry reagent to limestone slurry reagent was investigated. The pump was a horizontal 50 x 65 mm (2 x 2.5 in.) Galiger pump with a split cast iron case and open rotor (impeller). Both the case and the ductile iron rotor core were covered by natural rubber. Analyses conducted included surface examination of wear patterns, chemical analysis of materials, measurement of mechanical properties, and in-place flow tests. It was determined that the proximate cause of failure was cavitation and vortexing between the rotor and the lining. The root cause of the failure was the conversion from lime to limestone slurry without appropriate modification of the pump. Conversion to the limestone slurry resulted in fluid dynamics outside the operational limits of the pump. The recommended remedial action was replacement with a pump appropriately sized for the desired pressures and flow rates for limestone slurry.
Book Chapter
Failure Analysis of a Space Shuttle Solid Rocket Booster Auxiliary Power Unit (APU) Fuel Isolation Valve
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001294
EISBN: 978-1-62708-215-0
... Abstract A precipitation-hardened stainless steel poppet valve assembly used to shut off the flow of hydrazine fuel to an auxiliary power unit was found to leak. SEM and optical micrographs revealed that the final heat treatment designed for the AM-350 bellows material rendered the AM-355...
Abstract
A precipitation-hardened stainless steel poppet valve assembly used to shut off the flow of hydrazine fuel to an auxiliary power unit was found to leak. SEM and optical micrographs revealed that the final heat treatment designed for the AM-350 bellows material rendered the AM-355 poppet susceptible to intergranular corrosive attack (IGA) from a decontaminant containing hydroxy-acetic acid. This attack provided pathways for which fluid could leak across the sealing surface in the closed condition. It was concluded that the current design is flight worthy if the poppet valve assembly passes a preflight helium pressure test. However a future design should use the same material for the poppet and bellows so that the final heat treatment will produce an assembly not susceptible to IGA.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003568
EISBN: 978-1-62708-180-1
... or piping is most likely when fluid velocities exceed 2.1 m/s (7 ft/s). Damage occurs first at locations where direction of flow changes, such as elbows or U-bends. Large-radius bends are less susceptible to such damage; however, use of erosion-resistant materials, such as austenitic stainless steel...
Abstract
Erosion occurs as the result of a number of different mechanisms, depending on the composition, size, and shape of the eroding particles; their velocity and angle of impact; and the composition of the surface being eroded. This article describes the erosion of ductile and brittle materials with the aid of models and equations. It presents three examples of erosive wear failures, namely, abrasive erosion, erosion-corrosion, and cavitation erosion.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001809
EISBN: 978-1-62708-180-1
..., such as oxidation; and some are wear-debris particles. Hydrostatic bearings are flushed continuously by the flow required to carry a load; hydrodynamic bearings are often flushed by a flow of lubricant to remove heat, which develops mostly in the fluid film itself due to viscous shear. It is convenient...
Abstract
This article discusses the classification of sliding bearings and describes the major groups of soft metal bearing materials: babbitts, copper-lead bearing alloys, bronze, and aluminum alloys. It provides a discussion on the methods for fluid-film lubrication in bearings. The article presents the variables of interest for a rotating shaft and the load-carrying capacity and surface roughness of bearings. Grooves and depressions are often provided in bearing surfaces to supply or feed lubricant to the load-carrying regions. The article explains the effect of contaminants in bearings and presents the steps for failure analysis of sliding bearings. It also reviews the factors responsible for bearing failure with examples.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
..., and regenerative), flow arrangement (e.g., single-pass counterflow), and heat-transfer mechanism (e.g., single- or two-phase convection, such as in condensers or boilers). Tubular heat exchangers are generally used for large fluid systems, whereas heat exchangers of plate or sheet construction are often preferred...
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006795
EISBN: 978-1-62708-295-2
... tubes that are subjected to direct impingement by wet steam. Liquid impingement erosion in tubing and piping is most likely when fluid velocities exceed 2.1 m/s (7 ft/s). Damage occurs first at locations where direction of flow changes, such as elbows or U-bends. Large-radius bends are less susceptible...
Abstract
Erosion is the progressive loss of original material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, an impinging liquid, or impinging solid particles. The detrimental effects of erosion have caused problems in a number of industries. This article describes the processes involved in erosion of ductile materials, brittle materials, and elastomers. Some examples of erosive wear failures are given on abrasive erosion, liquid impingement erosion, cavitation, and erosion-corrosion. In addition, the article provides information on the selection of materials for applications in which erosive wear failures can occur.
Book Chapter
Failure Analysis of Epoxy Resin Encapsulant During a Long-Term Storage
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001798
EISBN: 978-1-62708-241-9
.... Hardness Tests The results of hardness tests are shown in Table 1 . Hardness test results of the three encapsulants Table 1 Hardness test results of the three encapsulants Specimen Normal Softened Fluid Hardness (shore A) 93 64 (Flow) a a Represents...
Abstract
The crosslinked epoxy resin encapsulant protecting an electromagnetic valve coil failed during long-term storage and was examined to determine the cause. The investigation included fault-tree analysis, FTIR and EDX spectroscopy, and differential scanning calorimetry with thermogravimetric analysis. Based on test data, the epoxy resin had not been properly cured and was hydrolyzed in its compromised state because of humidity. Hence, the depolymerized material gradually softened to the point where the effect of creep caused it to flow, ultimately causing the failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003569
EISBN: 978-1-62708-180-1
... , 27 , 28 ). Most cavitation erosion damage takes place on the suction surface of the impeller because of suction instabilities. With decreasing flow rate, the fluid approaches the impeller blades with larger and larger angles of incidence. This leads to great variations of pressure and velocity...
Abstract
This article considers two mechanisms of cavitation failure: those for ductile materials and those for brittle materials. It examines the different stages of cavitation erosion. The article explains various cavitation failures including cavitation in bearings, centrifugal pumps, and gearboxes. It provides information on the cavitation resistance of materials and other prevention parameters. The article describes two American Society for Testing and Materials (ASTM) standards for the evaluation of erosion and cavitation, namely, ASTM Standard G 32 and ASTM Standard G 73. It concludes with a discussion on correlations between laboratory results and service.
Book Chapter
Flow-Induced Vibration Fatigue of Stainless Steel Impeller Blades in a Circulating Water Pump
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001082
EISBN: 978-1-62708-214-3
..., in diameter) are used in numerous applications, such as drainage control, boat thrusters, and both power plant and process cooling. Pump impellers are subjected to high-pressure differentials across the intake and exit, high fluid velocities, and fluids that may cause erosion or corrosion. Flow-induced...
Abstract
Several large-diameter type 304L stainless steel impeller/propeller blades in a circulating water pump failed after approximately 8 months of operation. The impeller was a single casting that had been modified with a fillet weld buildup at the blade root. Visual examination indicated that the fracture originated near the blade-to-hub attachment in the area of the weld buildup. Specimens from four failed castings and from an impeller that had developed cracks prior to design modification were subjected to a complete analysis. A number of finite-element-method computer models were also constructed. It was determined that the blades failed by fatigue that had been accelerated by stress-corrosion cracking. The mechanism of failure was flow-induced vibration, in which the vortex-shedding frequencies of the blades were attuned to the natural frequency of the blade/hub configuration. A number of solutions involving material selection and impeller redesign were recommended.
Book Chapter
Failure of Boilers and Related Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
..., heat transfer is primarily controlled by the conductance of fluid films at the inner and outer surfaces. Although higher heat fluxes cause higher tube-wall temperatures, deposits have a greater effect on tube-wall temperatures and therefore on overheating. Restriction of Fluid Flow as a Cause...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Image
Illustration of flow behavior. (a) Dashpot. (b) Rotational parallel plate. ...
Available to PurchasePublished: 15 May 2022
Fig. 1 Illustration of flow behavior. (a) Dashpot. (b) Rotational parallel plate. (c) Capillary rheometer geometry. Flow, Fluid behavior, Viscous nature: F = F(v); F ≠ F(x) ; F -force; v , velocity; x , displacement; T , torque; Ω, angular velocity
More
Book Chapter
Feedwater Piping Erosion at a Waste-to-Energy Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001276
EISBN: 978-1-62708-215-0
... not be determined by the appearance of the piping. Remedial Action Erosion damage most likely occurs when fluid velocities exceed 2.13 m/s (7 ft/s) ( Ref 1 ). The damage generally occurs first at locations where the direction of flow changes, such as at elbows and U-bends. Flow velocity, V , can...
Abstract
The carbon steel feedwater piping at a waste-to-energy plant was suffering from wall thinning and leaking after being in service for approximately six years. Metallographic examination of ring sections removed front the piping revealed a normal microstructure consisting of pearlite and ferrite. However, the internal surface on the thicker regions of the rings exhibited significant deposit buildup, where the thinned regions showed none. No significant corrosion or pitting was observed on either the internal or external surface of the piping. The lack of internal deposits on the affected areas and the evidence of flow patterns indicated that the wall thinning and subsequent failure were caused by internal erosion damage. The exact cause of the erosion could not be determined by the appearance of the piping. Probable causes of the erosion include an excessively high velocity flow through the piping, extremely turbulent flow, and/or intrusions (weld backing rings or weld bead protrusions) on the internal surface of the pipes. Increasing the pipe diameter and decreasing the intrusions on the internal surface would help to eliminate the problem.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... surface is a second convective heat-transfer mode. The steam-side heat-transfer coefficient is a function of fluid velocity, viscosity, density, and tube bore diameter. Boilers in service for some time have a fourth component to the heat-flow path: internal scale or deposits. Steam reacts with steel...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
1