Skip Nav Destination
Close Modal
Search Results for
flexibility
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 112 Search Results for
flexibility
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001090
EISBN: 978-1-62708-214-3
... Abstract A stainless steel flexible connector failed after a short period of service. Visual examination of the failed part revealed that a fracture had occurred in the thin-walled stainless steel bellows brazed into the flanges at each end. Surface examination by SEM fractography showed...
Abstract
A stainless steel flexible connector failed after a short period of service. Visual examination of the failed part revealed that a fracture had occurred in the thin-walled stainless steel bellows brazed into the flanges at each end. Surface examination by SEM fractography showed that failure of the bellows occurred via fatigue. The crack in the bellows had widened considerably after the fracture, and the bellows had been severely compressed on the fracture side prior to failure. Based on these observations, it was concluded that bellows had been damaged prior to installation. The damage resulted in high mean tensile stresses upon which were superimposed cyclic stresses, with fatigue failure the final result.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001851
EISBN: 978-1-62708-241-9
... Abstract Shaft misalignment and rotor unbalance contribute to the premature failure of many machine components. To understand how these failures occur and quantify the effects, investigators developed a model of a rotating assembly, including a motor, flexible coupling, driveshaft, and bearings...
Abstract
Shaft misalignment and rotor unbalance contribute to the premature failure of many machine components. To understand how these failures occur and quantify the effects, investigators developed a model of a rotating assembly, including a motor, flexible coupling, driveshaft, and bearings. Equations of motion accounting for misalignment and unbalance were then derived using finite elements. A spectral method for resolving these equations was also developed, making it possible to obtain and analyze dynamic system response and identify misalignment and unbalance conditions.
Image
in Failure Analysis of Computer Data Storage Disc Drive Systems
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 11 Sketch of head/media coupling of flexible type bernoulli drive
More
Image
Published: 15 May 2022
Fig. 2 Examples of a flexible mold showing two castings of spur gears as produced from the mold. Source: iStock/coddy
More
Image
in Failure Analysis of a Misaligned and Unbalanced Flexible Rotor
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 5 Rotating flexible disi with rigid body motion
More
Image
Published: 01 December 1993
Fig. 1 Bottle-to-flexible hose fitting used on mobile unit. Note damage to rim of steel fitting caused by explosion. 0.88×.
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048361
EISBN: 978-1-62708-234-1
.... The transgranular cracks suggested that thermal fatigue was a more likely cause of failure than SCC. It was concluded by temperature measurements that circumferential temperature gradients, in combination with inadequate flexibility in the piping system as a whole, had caused the failures. The tee fitting...
Abstract
Several failures occurred in 64-mm schedule 80 type 304 stainless steel (ASME SA-312, grade TP304) piping in a steam-plant heat-exchanger system near tee fittings at which cool water returning from the heat exchanger was combined with hot water from a bypass. Various portions of the piping were subjected to temperatures ranging from 29 to 288 deg C. Each of the failures were revealed to consist of transgranular cracking in and/or close to the circumferential butt weld joining the tee fitting to the downstream pipe leg, where the hot bypass water mixed with the cool return water. The transgranular cracks suggested that thermal fatigue was a more likely cause of failure than SCC. It was concluded by temperature measurements that circumferential temperature gradients, in combination with inadequate flexibility in the piping system as a whole, had caused the failures. The tee fitting was redesigned to alleviate the thermal stress pattern.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089722
EISBN: 978-1-62708-217-4
... Abstract A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which...
Abstract
A welded elbow assembly (AISI type 321 stainless steel, with components joined with ER347 stainless steel filler metal by gas tungsten arc welding) was part of a hydraulic-pump pressure line for a jet aircraft. The other end of the tube was attached to a flexible metal hose, which provided no support and offered no resistance to vibration. The line was leaking hydraulic fluid at the nut end of the elbow. Investigation supported the conclusion that failure was by fatigue cracking initiated from a notch at the root of the weld and was propagated by cyclic loading of the tubing as the result of vibration and inadequate support of the hose assembly. Recommendations included changing the joint design from a cylindrical lap joint to a square-groove butt joint. Also, an additional support was recommended for the hose assembly to minimize vibration at the elbow.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047823
EISBN: 978-1-62708-236-5
... stresses were caused by misalignment between the electric motor and compressor and were transmitted to the shaft through the geared coupling. Flexible-disk couplings capable of transmitting the required horsepower were installed on the shafts as a corrective measure. Alignment Bending Radii 4340...
Abstract
High-horsepower electric motors were utilized to drive large compressors (made of 4340 steel shafts and gear-type couplings) required in a manufacturing process. The load was transmitted by two keys 180 deg apart. Six of the eight compressor shafts were found cracked in a keyway and one of them fractured after a few months of operation. Visual examination of fractured shaft revealed that the cracks originated from one of the keyways and propagated circumferentially around the shaft. The shaft and coupling slippage was indicated by the upset keys and this type of fracture. The shaft surface both near and in the keyways indicated fretting which greatly reduced the fatigue limit of the shaft metal and initiated fatigue cracks. Fatigue marks were observed on the fractured key. Repetitive impact loading was responsible for propagation of the cracks. The high cyclic bending stresses were caused by misalignment between the electric motor and compressor and were transmitted to the shaft through the geared coupling. Flexible-disk couplings capable of transmitting the required horsepower were installed on the shafts as a corrective measure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... Abstract Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring...
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001749
EISBN: 978-1-62708-215-0
... Abstract An oxygen line that was part of a mobile, truck -mounted oxygen-acetylene welding unit exploded in service. Analysis revealed that the failure occurred at the flexible hose-to-valve connection. It was further determined that a steel adapter had been installed at the point of failure...
Abstract
An oxygen line that was part of a mobile, truck -mounted oxygen-acetylene welding unit exploded in service. Analysis revealed that the failure occurred at the flexible hose-to-valve connection. It was further determined that a steel adapter had been installed at the point of failure to make the connection. Use of the adapter which joined with a brass nipple, created an unacceptable dissimilar metal joint. The steel also provided a source for the generation of sparks. Loctite, a hydrocarbon sealant that is highly flammable and explosive in contact with pure oxygen, had been used to seal the threaded joint. It was recommended that only brass fittings be used to assemble removable joints and that use of washers, sealants, and hydrocarbon lubricants be strictly avoided.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001386
EISBN: 978-1-62708-215-0
.... Prevention of such corrosion by the use of a flexible sealant to eliminate the crevice was recommended. Agricultural equipment Bolted joints Brittle fracture Pressure cells Stress-corrosion cracking 420 UNS S42000 Pitting corrosion Corrosion fatigue Fatigue fracture Background Two type...
Abstract
Two type 420 martensitic stainless steel load cell bodies, which had been installed under two of the four legs of a milk storage tank failed in service. The failure occurred near a change in section and involved fracture of the entire cross section. Examination showed a brittle fracture that was preceded by a small fatigue region. Pitting corrosion was evident at the fracture origin. The areas around the load cells had been subjected to regular washdowns using high-pressure hot water, and the pitting was attributed to crevice corrosion between the load cell and the holddown bolts. Prevention of such corrosion by the use of a flexible sealant to eliminate the crevice was recommended.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006867
EISBN: 978-1-62708-395-9
... Abstract With any polymeric material, chemical exposure may have one or more different effects. Some chemicals act as plasticizers, changing the polymer from one that is hard, stiff, and brittle to one which is softer, more flexible, and sometimes tougher. Often these chemicals can dissolve...
Abstract
With any polymeric material, chemical exposure may have one or more different effects. Some chemicals act as plasticizers, changing the polymer from one that is hard, stiff, and brittle to one which is softer, more flexible, and sometimes tougher. Often these chemicals can dissolve the polymer if they are present in large enough quantity and if the polymer is not crosslinked. Other chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC reagent. Finally, there are some chemicals that cause actual degradation of the polymer, breaking the macromolecular chains, reducing molecular weight, and diminishing polymer properties as a result. This article examines each of these effects. The discussion also covers the effects of surface embrittlement and temperature on polymer performance.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001052
EISBN: 978-1-62708-214-3
... Abstract A failure analysis was conducted to determine the cause of recurring failure of flexible bellows in an exhaust hose assembly. The bellows were made of type 321 stainless steel. Visual examination showed that cracks followed a path along the seam weld in the bellows. Most of the cracks...
Abstract
A failure analysis was conducted to determine the cause of recurring failure of flexible bellows in an exhaust hose assembly. The bellows were made of type 321 stainless steel. Visual examination showed that cracks followed a path along the seam weld in the bellows. Most of the cracks followed a multidirectional/circular pattern, occasionally chipping off the convolutions, an indication of high-resonance fatigue-type cracking. Scanning electron fractography showed fatigue striations throughout the fracture surface. The microstructure consisted of relatively large grains and an abnormal degree of titanium-base stringers. Wall thickness was about 0.15 mm (0.006 in.) underside. It was concluded that the high vane pass frequency excited the natural vibration of the bellows to a higher resonance and cracked the bellows after a relatively short service period. The assembly was redesigned, and no further cracking occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001516
EISBN: 978-1-62708-234-1
.... The substrate can be an aluminum alloy or a polymeric material usually polyethylene terepthalate. The disk drives are accordingly classified as hard or flexible. Recently 3.5″ or smaller disks have been introduced with glass substrates. Magnetic heads are made of a high permeability material, thin laminations...
Abstract
This paper deals with disk drive failures that occur in the interface area between the head and disk. The failures often lead to the loss of stored data and are characterized by circumferential microscratches that are usually visible to the unaided eye. The recording media in disk drives consists of a metal, glass, ceramic, or plastic substrate coated with a magnetic material. Data errors are classified as ‘soft’ or ‘hard’ depending on their correctability. Examination has shown that hard errors are the result of an abrasive wear process that begins with contact between head and disk asperities. The contact generates debris that, as it accumulates, increases contact pressure between the read-write head and the surface of the disk. Under sufficient pressure, the magnetic coating material begins wearing away, resulting in data loss.
Image
in On-Site Nondestructive Metallographic Examination of Materials
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 2 The grinding/polishing head of the Di-Profiler which is driven by the motor through a flexible shaft.
More
Image
Published: 01 January 2002
Fig. 7 General relationships of different mechanical behavior. Rigidity and strength are generally inversely related to flexibility and ductility. Source: Ref 12
More
Image
in Materials Selection for Failure Prevention
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 7 General relationships of different mechanical behavior. Rigidity and strength are generally inversely related to flexibility and ductility. Source: Ref 12
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001797
EISBN: 978-1-62708-241-9
... popular one is the engine distribution system. Such systems are flexible, and their dynamic response is affected by the operating speeds. Several authors were interested in computing the dynamic response of cam–follower system [ 1 – 4 ]. A crucial point in the design of the system is to ensure dynamic...
Abstract
Cam crack failures are a common occurrence in cam-follower systems often caused by excessive loading or inappropriate operating conditions. An investigation into such a failure was conducted to assess the effect of cam crack damage on the dynamic behavior of cam-follower systems. It was shown both theoretically and experimentally that a cracked cam causes an overall reduction in stiffness. To further probe the effect, investigators derived an analytical formula expressing the time varying stiffness of a cam-follower system. They also succeeded in quantifying the relationship between crack size and stiffness, showing that cracks have an amplitude modulating effect.
1