Skip Nav Destination
Close Modal
By
R.K. Dayal, J.B. Gnanamoorthy, P. Rodriguez
By
M.E. Stevenson, S.L. Lowrie, R.D. Bowman, B.A. Bennett
By
L.S. Araujo, L.H. de Almeida, E.M. Batista, A. Landesmann
By
Ladislav Kosec, Franc Vodopivec, Bogomir Wolf
By
I.B. Eryürek, M. Capa
By
Friedrich Karl Naumann, Ferdinand Spies
By
Roch J. Shipley, David A. Moore, William Dobson
By
Duane K. Miller, Curtis L. Decker
Search Results for
flanged beams
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 51
Search Results for flanged beams
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Connections such as (a) plate-to-plate and (b) wide flange beam-to-column t...
Available to Purchase
in Failure Analysis of Welded Structures
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 7 Connections such as (a) plate-to-plate and (b) wide flange beam-to-column that involve bolts and welds add an additional level of complexity to failure analysis.
More
Image
Published: 01 January 2002
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0047521
EISBN: 978-1-62708-218-1
... to the tractor main-frame I-beams fractured transversely, with the crack in each instance initiating at a weld that joined the edge of the lower flange to the support-bracket casting. The cracks propagated through the flange on each side until the effective cross-sectional area had been reduced sufficiently...
Abstract
A supplementary axle, which was used as an extension to a highway-trailer tractor to increase its load-bearing capacity, failed in service. The rolled steel channel extensions that secured the axle assembly to the tractor main-frame I-beams fractured transversely, with the crack in each instance initiating at a weld that joined the edge of the lower flange to the support bracket casting. The cracks propagated through the flange on each side until the effective cross-sectional area had been reduced sufficiently to bring about sudden and complete fracture of the remaining web and upper flange. Fatigue fracture was caused by a combination of high bending stresses in the bottom flanges of the channels due to the heavy load being carried, concentration of stresses due to the rapid change in section modulus of the channel at its point of attachment to the support-bracket casting, and brittleness of the high-hardness HAZ of the weld associated with the abnormally high carbon content in the central part of the channel. Welding of channel edges contributed to harmful gradients in section moduli and should be avoided in future assemblies.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001679
EISBN: 978-1-62708-229-7
... Abstract Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange...
Abstract
Several mercury diffusion pump stages in the Tritium Purification process at the Savannah River Site (SRS) have been removed from service for scheduled preventive maintenance. These stages have been examined to determine if failure has occurred. Evidence of fatigue around the flange portion of the pump has been seen. In addition, erosion and cavitation inside the throat of the venturi tube and corrosion on the other surface of the venturi tube has been observed. Several measures are being examined in an attempt to improve the performance of these pumps. These measures, as well as the noted observations, are described. Six stages [two machined (MP) and four electron beam (EB) welded] from the mercury diffusion pumps operating in the Tritium Purification process at SRS have been analyzed to determine their condition after nine months of usage. Several cracks were found around the necked region of the two MP stages. The EB welded stages, however, seemed to perform better in service; only two of four stages showed cracking. The cracking is caused by fatigue that has been enhanced by high stresses and tritium in the flange area. The EB welded stage appears to be a step in the right direction. Since the EB weld is a shrink fit, the surface is in compression, thereby eliminating crack propagation. In addition, shot peening has been employed to produce a compressive material surface since fatigue usually originates at the surface. Pitting was observed down the throat of the venturi. This pitting was caused by cavitation and erosion along the length of the venturi tube. Corrosion and pitting was seen on the exterior walls of the diffuser tubes. Stress-corrosion cracks were observed emanating from these corrosion pits. The corrosion likely occurred from the chloride ions present in the process cooling water. Shot peening is now being used in an attempt to place the outside of the diffuser tube in compression to eliminate the stress-corrosion cracking.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001821
EISBN: 978-1-62708-180-1
..., it was discovered that a crack had developed in the eastbound roadway in Span 11. The crack started at the end of the cover-plated beam; it propagated through the flange and up to 400 mm (16 in.) into the web of one of the main girders ( Fig. 1 ). Additional cracks, such as that shown in Fig. 3 , were detected...
Abstract
This article illustrates the defects, which result because of poor-quality welds in the bridge components. The cracks resulting from the use of low fatigue strength details are also discussed. The article describes the effect of out-of-plane distortion in floor-beam-girder connection plates, multiple-girder diaphragm connection plate, and tied-arch floor beams.
Book Chapter
Failure of an I-Beam
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001112
EISBN: 978-1-62708-214-3
... traveled in a curved path toward a flange, turned towards the center of the web, and then traveled almost in a straight line along the length of the beam. Near the other end of the beam, the crack path took a curvilinear course ( Fig. 1 and 2 ). After the rust was removed, several pits were visible...
Abstract
An I-beam of IS-226 specification—I-section dimensions of 450 x l50 x 10 mm (17.7 x 5.9 x 0.4 in.) and a length of 12.41 m (40.7ft)—was flame cut into two section in an open yard near these a coast under normal weather conditions. After approximately 112h, the shorter section of he I-beam split catastrophically along the entire length through the web. Detailed investigation revealed segregation of high levels of carbon, sulfur and phosphorus in the middle of the web and high residual stresses attributed to rolling during fabrication. Flame cutting caused a change in the distribution of the residual stresses, which, aided by low fracture toughness due to the poor quality of the beam, resulted in failure. It was recommended that segregation be avoided in cast ingots used for I-beam manufacture by implementing a better quality-control procedure.
Book Chapter
Metallurgical Failure Analysis of Cold Cracking in a Structural Steel Weldment: Revisiting a Classic Failure Mechanism
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001611
EISBN: 978-1-62708-219-8
... of the I-beam comprising the lower chord of the truss section scheduled to be the next truss erected. The crack ran almost the entire length of the lower flange, approximately 24 in. The failed weld joined the 3.25 in. thick flange of one I-beam to a 2.40 in. thick flange on another I-beam of 2.40...
Abstract
Cold cracking of structural steel weldments is a well-documented failure mechanism, and extensive work has been done to recognize welding and materials selection parameters associated with it. These efforts, however, have not fully eliminated the occurrence of such failures. This article examines a case of cold cracking failure in the construction industry. Fortunately, the failure was identified prior to final erection of the structural members and the weld was successfully reworked. The article explains how various welding parameters, such as electrode/wire selection, joint design, and pre/postheating, played a role in the failure. Human factors and fabrication practices that contributed to the problem are covered as well.
Book Chapter
Fracture of Cast Steel Equalizer Beams
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089572
EISBN: 978-1-62708-218-1
... as region E in detail A in Fig. 1 shows a band of fatigue beach marks that nearly penetrated the fillet between the upper portion of the left flange and the web of the beam. Final fracture occurred at this stage, because the remaining section of the beam was unable to sustain the applied load...
Abstract
Two sand-cast low-alloy steel equalizer beams (ASTM A 148, grade 105-85) designed to distribute the load to the axles of a highway truck broke after an unreported length of service. Normal service life would have been about 805,000 km (500,000 mi) of truck operation. Investigation (visual inspection, chemical analysis, tensile testing, unetched 65x and 1% nital etched 65x magnification) supported the conclusions that the steel was too soft for the application – probably due to improper heat treatment. Fracture of the equalizer beams resulted from growth of mechanical cracks that were formed before the castings were heat treated. Recommendations included the following changes in processing: better gating and risering in the foundry to achieve sounder castings; better shakeout practice to avoid mechanical damage; better inspection to detect imperfections; and normalizing and tempering to achieve better mechanical properties.
Book Chapter
Ultrasonic Inspection of an Upset-Forged 4118 Steel Shaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0059932
EISBN: 978-1-62708-236-5
... the radial hole because of the added length of beam path. The rejection level was set at 20% of full screen and was based on the size of flaws observed when the shafts were cut up. The flange portion was first cut out of the shaft and retested with a smaller-diameter transducer to better define...
Abstract
Field failures, traced to internal cracks that were initiated from gross nonmetallics, were encountered in the upset portion of forged 4118 steel shafts. Ultrasonic inspection was thought to be the best method for detection from the location of these cracks, their orientation, and the size of the shaft. A longitudinal beam was sent in from the end of the shaft. The shaft was observed to have a radially drilled oil hole 9 mm in diam. Since there was a variation in flaw orientation, testing of the shaft was desired from both the long and short end. The rejection level was set at 20% of full screen and was based on the size of flaws observed when the shafts were cut up. The inclusions were considered to be rejectable if the size was larger than 20 mm diam. Similar flaws were observed in larger shafts, but no flaws were observed once the shafts were sectioned. It was interpreted that the flaw signals were false and had happened when a portion of the beam struck the oily surface of the longitudinal oil hole. The problem was solved by removing the oil film from the longitudinal oil hole.
Image
Cracking in a floor-beam web above the end of the riveted angle end connect...
Available to PurchasePublished: 01 January 2002
Fig. 29 Cracking in a floor-beam web above the end of the riveted angle end connection. (a) Floor beam/tie girder connection. (b) Crack along the web-flange weld above the end connection
More
Book Chapter
Failure of a Bucket-Wheel Stacker Reclaimer: Metallographic and Structural Analyses
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001777
EISBN: 978-1-62708-241-9
... of the loading forces arising from the 3D trussed beam and the front platform that supports the bucket wheel and machinery. The RHS member in Fig. 4a shows the steel flange, typical of bolt failure by tensile forces, including the prying action developed between the two flange plates. In this case...
Abstract
The structural collapse of an iron-ore bucket-wheel stacker reclaimer at the beginning of operation was investigated by means of mechanical tests, microstructural characterization, and computational structural analysis. The mechanical failure was a consequence of a brittle fracture by cleavage. The crack followed the heat-affected zone of a welded joint connecting a rectangular hollow section member and a plate flange. The main factors contributing to failure were related with a combination of design-in and manufacturing-in factors like high load-strength ratio at the point of failure, local stress concentration as a result of geometry restrictions, and weld defects. This particular section was responsible for the load transfer between the front tie member and the boom extremity, and its failure was the main cause of the catastrophic failure of the equipment.
Book Chapter
Failure of a Flange from a High Pressure Feeder Plant
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001249
EISBN: 978-1-62708-236-5
... Abstract The flanged bearing bush carrying the drive shaft of a feed pump suddenly fractured after about two years of service. The chemical composition was normal for high chromium ledeburitic cast steel, which was corrosion and wear resistant as well as refractory. For unknown reasons...
Abstract
The flanged bearing bush carrying the drive shaft of a feed pump suddenly fractured after about two years of service. The chemical composition was normal for high chromium ledeburitic cast steel, which was corrosion and wear resistant as well as refractory. For unknown reasons the rotating shaft came into direct contact with the flange. Mechanical friction caused a rise in temperature on both contact surfaces. This mutual contact lasted long enough for the temperature in the contact zone to exceed 1200 deg C, at which the flange material became softened or molten. As a result, considerable structural changes took place on the inner wall of the flange. Thermal stresses and excessive mechanical loads due to smearing of the flange material then led to fracture of the flange.
Image
Steel supplementary axle assembly for a highway trailer that broke in servi...
Available to Purchase
in Fracture of Supplementary Axle-Support Channels for a Highway Trailer Caused by Restricting Welds
> ASM Failure Analysis Case Histories: Automobiles and Trucks
Published: 01 June 2019
Fig. 1 Steel supplementary axle assembly for a highway trailer that broke in service because of restricting welds. (a) Forward left side of the assembly showing fracture surface of the channel extension. Also visible are the cross l-beam, supporting plate, and support-bracket casting. (b
More
Book Chapter
Collapse of Extension Ladders by Overloading of Side Rails
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0092122
EISBN: 978-1-62708-222-8
... beyond the yield strength of the alloy. Recommendations included increasing the thickness of the flange and web of the side-rail extrusion. Buckling Extrusions Plastic deformation 6063-T6 UNS A96063 Buckling Several aluminum alloy extension ladders of the same size and type collapsed...
Abstract
Several 6063-T6 aluminum alloy extension ladders of the same size and type collapsed in service in the same manner; the extruded aluminum alloy 6063-T6 side rails buckled, but the rungs and hardware remained firmly in place. The ladders had a maximum extended length of 6.4 m (21 ft) with a recommended maximum angle of inclination of 75 deg (15 deg from vertical). Investigation (visual inspection, hardness testing, metallographic examination, stress analysis, and tensile tests) supported the conclusion that the side rails of the ladders buckled when subjected to loads that produced stresses beyond the yield strength of the alloy. Recommendations included increasing the thickness of the flange and web of the side-rail extrusion.
Book Chapter
Fracture of the Bottom Platen of an 800 Ton Hydraulic Press
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001288
EISBN: 978-1-62708-215-0
... Stress Analysis Analytical The platen-supporting flange was considered a built-in cantilever beam ( Fig. 4 ). The table weight, residual stresses, and friction forces between the flange and its supporting surface are neglected in the calculation. The reaction force on the bottom of the flange...
Abstract
The side supporting flange of the bottom platen of an 800 ton hydraulic press fractured after 9 x 10's cycles under a maximum load of 530 tons. The platen material specified in the design was cast steel 52. Metallographic examination of the fracture surface indicated that the platen had failed in fatigue as a result of a high stress concentration in a sharp 0.6 mm (0.02 in.) radius fillet. Stress analysis and fracture mechanics predictions revealed that there was also danger of fatigue failure for platens with the design radius of 10 mm (0. 4 in.) if the press operates at 800 tons. It was recommended that the remaining life of similar presses be assessed periodically controlling the cracks, their dimensions, and their propagation rates. An increase in the radius of the fillet was also recommended.
Book Chapter
Fatigue Fracture and Weld
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001152
EISBN: 978-1-62708-234-1
... waves in a swimming pool, which was made out of a I-profile beam, was strengthened by welding strips to get a box-like profile. This failed after a comparatively short service, beginning from the flanges at a point where the strengthening ended ( Fig. 1 ). The fracture was initiated by fatigue cracking...
Abstract
Thermal and transformation stresses, resulting from welding, adding up with operational stresses can result in failure. Examples involving the crankshaft of a shaft-drive to produce artificial waves in a swimming pool, the joint bar of a dredger cast out of a running non-alloyed steel with 39 kg/sq mm tensile strength, which had been strengthened by welding plate strips on both sides had fractured in service; an axle tube out of 40 Mn 4 after DIN 17 200 from a paper fabrication machine, which had three short longitudinal slits distributed uniformly over its surface; welding to repair worn out bearing or fits, and a broken rear axle tube of a bus are described.
Book Chapter
Failures Related to Welding
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds. arc welding brittle fracture electrogas welds...
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
Book Chapter
Analysis of Distortion and Deformation
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003573
EISBN: 978-1-62708-180-1
... of tubes, I-beams, channels, and angles under bending forces. Tubes may also buckle due to torsional forces, causing waves, or folds, generally perpendicular to the direction of the compressive-stress component. Parts under bending load are also subject to buckling failures on the compressive (concave...
Abstract
Distortion failure occurs when a structure or component is deformed so that it can no longer support the load it was intended to carry. Every structure has a load limit beyond which it is considered unsafe or unreliable. Estimation of load limits is an important aspect of design and is commonly computed by classical design or limit analysis. This article discusses the common aspects of failure by distortion with suitable examples. Analysis of a distortion failure often must be thorough and rigorous to determine the root cause of failure and to specify proper corrective action. The article summarizes the general process of distortion failure analysis. It also discusses three types of distortion failures that provide useful insights into the problems of analyzing unusual mechanisms of distortion. These include elastic distortion, ratcheting, and inelastic cyclic buckling.
Book Chapter
Analysis of Distortion and Deformation
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
... was exceeded. Long, slender, straight bars, tubes, or columns under axial compressive forces will buckle when the buckling load is exceeded. Buckling failure may also be encountered on the compressive sides of tubes, I-beams, channels, and angles under bending forces. Tubes may also buckle due to torsional...
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Book Chapter
Failure Analysis of Welded Structures
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006814
EISBN: 978-1-62708-329-4
.... However, when rotated 90°, as shown in Fig. 5(b) , the load distributed along the length of the weld is no longer uniform but has a peak stress in the center of the weld length, which may be problematic when the beam has thin flanges. When failed welded connections involve differences in the stiffness...
Abstract
Welded connections are a common location for failures for many reasons, as explained in this article. This article looks at such failures from a holistic perspective. It discusses the interaction of manufacturing-related cracking and service failures and primarily deals with failures that occur in service due to stresses caused by externally applied loads. The purpose of this article is to enable a failure analyst to identify the causative factors that lead to welded connection failure and to identify the corrective actions needed to overcome such failures in the future. Additionally, the reader will learn from the mistakes of others and use principles that will avoid the occurrence of similar failures in the future. The topics covered include failure analysis fundamentals, welded connections failure analysis, welded connections and discontinuities, and fatigue. In addition, several case studies that demonstrate how a holistic approach to failure analysis is necessary are presented.
1