1-7 of 7 Search Results for

flame-retardant polyester resin

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
.... Engineering plastics all have, as their principal constituent, one or more synthetic polymer resins and almost universally contain additives. Additives, which have much smaller molecules than polymers, provide color, flexibility, rigidity, flame resistance, weathering resistance, and/or processibility...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
... the processability window, shelf life, appearance, flame retardancy, and other properties required to fulfill the application of the material. For example, one of the most-used polyolefin materials, polypropylene, would not be commercially successful without additives, because it is likely to degrade within one week...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006923
EISBN: 978-1-62708-395-9
..., and glass transition temperature. It also provides information on polyimide and bismaleimide resin systems. Representative examples of different types of engineering thermoplastics are discussed primarily in terms of structure and thermal properties. chemical composition elastomeric materials...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006864
EISBN: 978-1-62708-395-9
..., a composite process that has many similarities to extrusion, is selected only when constant sections are required. Pultrusion begins with strands of reinforcement, usually glass or carbon fibers, that have been wetted in a resin tank ( Fig. 17 ). The resin used is most often an epoxy or polyester. The next...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006871
EISBN: 978-1-62708-395-9
... to these conditions can be discoloration (fading or yellowing), loss of mechanical strength, embrittlement, loss of electrical insulation and resistance properties, loss of flame retardant properties, and many more. The degree to which a particular material degrades depends on its sensitivity to each of the above...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... been dissolved. Iron is nearly inert in air-free water and seawater, because there is limited cathodic reaction possible. If the surface of the metal is coated with paint or other nonconducting film, the rates of both anodic and cathodic reactions are greatly reduced, and corrosion will be retarded...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
... effect on solubility, chemical resistance, and softening point. Silicon Silicon is found primarily in silicones, where it imparts low surface energy and resistance to oxidation. Phosphorus Low-molecular-weight phosphorus-containing additives or co-monomers are used as flame retardants...