Skip Nav Destination
Close Modal
Search Results for
flame hardening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 53 Search Results for
flame hardening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001212
EISBN: 978-1-62708-235-8
... Abstract Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded...
Abstract
Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded that the numerous hardening cracks were caused by abrupt quenching from over-heating temperature and by local stress concentrations due to indentations of the tool caused during alignment.
Image
in Cracks in Flame Hardened Operation Handles
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Image
in Cracks in Flame Hardened Operation Handles
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047991
EISBN: 978-1-62708-225-9
... Abstract Deformation, surface cracking, and spalling on the raceway of the outer ring (made of 4140 steel) of a large bearing caused it to be replaced from a radar antenna. The raceway surfaces were to be flame hardened to 55 HRC minimum and 50 HRC 3.2 mm below the surface, according...
Abstract
Deformation, surface cracking, and spalling on the raceway of the outer ring (made of 4140 steel) of a large bearing caused it to be replaced from a radar antenna. The raceway surfaces were to be flame hardened to 55 HRC minimum and 50 HRC 3.2 mm below the surface, according to specifications. Samples from both the inner and outer rings were examined. A much lower hardness (25.2 to 18.9 HRC) was indicated during a vertical traverse 4.1 cm from the outer surface of the outer ring while slightly lower hardness values (46.8 to 54.8 HRC) were seen on the hardness traverse on the inner ring raceway. The lower hardness values were attributed to improper flame hardening. It was confirmed by metallographic examination of a 3% nital etched sample that the inner ring (tempered martensite and ferrite) and the outer ring (ferrite, scattered patches of pearlite, and martensite) were not properly austenitized. Displacement of metal on the outer raceway was revealed by elongation of grain structure. It was concluded that the failure of the raceway surface was due to incomplete austenitization caused by the improper heat treatment during flame hardening process.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001308
EISBN: 978-1-62708-215-0
..., large, residual, tangential stresses are believed to exist in this particular rail from fit-up distortion, flame-hardening treatment, and weld repairs. A turntable rail in a wind tunnel test section had been experiencing cracking since its installation in the 1970s. The rail was forged from SAE 1080...
Abstract
Persistent cracking in a forged 1080 steel turntable rail in a wind tunnel test section was investigated. All cracks were oriented transverse to the axis of the rail, and some had propagated through the flange into the web. Through-flange cracks had been repair welded. A section of the flange containing one through-flange crack was examined using various methods. Results indicated that the cracks had initiated from intergranular quench cracks caused by the use of water as the quenching medium. Brittle propagation of the cracks was promoted by high residual stresses acting in conjunction with applied loads. Repair welding was discontinued to prevent the introduction of additional residual stress., Finite-element analysis was used to show that the rail could tolerate existing cracks. Periodic inspection to monitor the degree of cracking was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001444
EISBN: 978-1-62708-231-0
... and its presence in this instance is due to the fact that, during the flame-cutting operation a narrow band of material on each side of the cut was raised above the hardening temperature and when the torch had passed, the rate of abstraction of heat from this zone by conduction into the cold mass...
Abstract
To permit bolting of a 90 lb/yd. flat-bottomed rail to a steel structure, rectangular slots 2 in. wide x 1 in. deep were flame-cut in the base of the rail at 2 ft intervals to suit existing bolt holes. During subsequent handling, one of the rails (which were about 25 ft long) was dropped from a height of approximately 6 ft on to a concrete floor and it fractured into 11 pieces, each break occurring at a slot. The sample piece submitted for examination showed a wholly brittle fracture at each end, the fractures having originated at the sharp corners of the slots. During flame-cutting, a narrow band of material on each side of the cut was raised above the hardening temperature. When the torch had passed the rate of abstraction of heat from this zone by conduction into the cold mass of the rail was sufficiently rapid to amount to a quench and thus cause local hardening. The steel in the regions of the slots possessed little capacity for deformation, and fracturing of the martensitic layer, under cooling or impact stresses, would be likely to occur. The slots should have been cut mechanically.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048091
EISBN: 978-1-62708-224-2
... Abstract A section from a stop-block guide fell to the floor on a crane runway after it failed. A brittle crystalline-type break was disclosed by examination of the fracture surface. The point of initiation was in a hardened heat-affected layer that had developed during flame cutting...
Abstract
A section from a stop-block guide fell to the floor on a crane runway after it failed. A brittle crystalline-type break was disclosed by examination of the fracture surface. The point of initiation was in a hardened heat-affected layer that had developed during flame cutting and welding. The metal was identified to be 1020 steel. It was indicated by the coarse as-rolled structure (grain size of ASTM 00 to 4) of the base metal that the weldment (stop block and guide) had not been normalized. The brittle failure was evaluated to have been initiated at a metallurgical and mechanical notch produced by flame cutting and welding. As corrective measures, fully silicon-killed 1020 steel with a maximum grain size of ASTM 5 were used to make new stop-block weldments. The weldments were normalized at 900 deg C after flame cutting and welding to improve microstructure and impact strength. All flame-cut surfaces were ground to remove notches.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048064
EISBN: 978-1-62708-224-2
... in a hardened martensitic zone at the torch-cut surface and had extended up to the coarse pearlite structure beneath the martensitic zone. The fatigue fracture was concluded to have initiated in the brittle martensitic surface while failure was contributed by the 25% overload. As a corrective measure, the coil...
Abstract
A 10,890-kg coil hook torch cut from 1040 steel plate failed while lifting a load of 13,600 kg after eight years of service. The normal ironing (wear) marks were exhibited by the inner surface of the hook. It was revealed by visual examination that cracking had originated at the inside radius of the hook. Beach marks (typical of fatigue fracture) were found extending over approximately 20% of the fracture surface. Numerous cracks were revealed by macroscopic examination of the torch-cut surfaces. It was revealed by macrograph of an etched specimen that the cracks had initiated in a hardened martensitic zone at the torch-cut surface and had extended up to the coarse pearlite structure beneath the martensitic zone. The fatigue fracture was concluded to have initiated in the brittle martensitic surface while failure was contributed by the 25% overload. As a corrective measure, the coil hooks were flame cut from ASTM A242 fine-grain steel plate, ground to remove the material damaged by flame cutting and stress relieved at 620 deg C.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0047406
EISBN: 978-1-62708-232-7
... to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening...
Abstract
A cast countershaft pinion on a car puller for a blast furnace broke after one month of service; expected life was 12 months. The pinion was specified to be made of 1045 steel heat treated to a hardness of 245 HRB. The pinion steel was analyzed and was a satisfactory alternative to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening of the tooth surfaces. Contributing factors included uneven loading because of misalignment and stress concentrations in the tooth roots caused by tool marks. Greater strength was provided by oil quenching and tempering the replacement pinions to a hardness of 255 to 302 HRB. Machining of the tooth roots was revised to eliminate all tool marks. Surface hardening was applied to all tooth surfaces, including the root. Proper alignment of the pinion was ensured by carefully checking the meshing of the teeth at startup.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001478
EISBN: 978-1-62708-220-4
.... They could have conceivably arisen as a result of accidental heating by the flame of the brazing torch. If the temperature had been raised locally to above the lower critical — 730°C the region would harden subsequently due to the rapid cooling which would occur when the flame was removed. The cracks which...
Abstract
The broken end of a shaft from a centrifugal pump had a smooth fracture surface characteristic of failure from fatigue. Failure occurred in the plane of the keyway end and followed a slightly helical path, indicating that combined bending and torsional stresses were responsible. The material was a Cr-Mo-Ni alloy steel of the En 19 type in the hardened and tempered condition and of satisfactory quality. The assembly also included a copper sleeve attached by a circumferential braze behind the plane of fracture. The cracks were examined for the presence of copper, thinking that penetration by molten copper may have played a role, but no evidence was seen. An absence of chromium plating at the region of the heat-affected zone was also observed but could not be explained. Unfortunately, the end portion of the shaft was not available for examination.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... in large steam turbines in Russia and Switzerland, owing to their high strength-to-weight ratio and better resistance to erosion and corrosion than 12% Cr steel. All of the commonly used blade alloys are protected from liquid-droplet impingement in the last blade row by local hardening (by flame...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001723
EISBN: 978-1-62708-221-1
... initiated at the end of the plates, where they had been sheared to length, and the resulting work-hardening of the material had led to strain-age-embrittlement, possibly as a result of the heating imparted by the operation of flame-cutting the slot. Tests showed that the steel was susceptible...
Abstract
A new crane failed during the overload test following erection. A test load of 5 tons at the end of the jib (rated capacity 4 tons) was in the process of being slewed at the time of this failure. Inspection revealed that the collapse had resulted from the opening out of one eye of the rimming steel tie-bar of the main jib at the lower splice. This permitted the pin to pass through and allowed the jib to fall. Examination subsequently revealed that brittle fracture of two of the corner angles of the tower head assembly had also occurred. Had the tie-bar material been of satisfactory quality and/or, if the end that failed had been flamecut instead of sheared, then the damage resulting from the excessive overload would have been limited to yielding of the material in the region of the pin-joint. Such yielding on an overload test further indicated that the scantlings of the pin-joints were inadequate. Two other crane failures showed that failure resulted from the use of rimming steel, and embrittlement of the material was evident.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... that ranges between 0.12 and 8 mm (0.005 and 0.315 in.) or nitrided with a case thickness between 0.2 and 0.6 mm (0.008 and 0.024 in.). They may also be flame or induction hardened. After World War II, when Europe rebuilt their manufacturing facilities, there was a transition to using case-hardened...
Abstract
This article first reviews variations within the most common types of gears, namely spur, helical, worm, and straight and spiral bevel. It then provides information on gear tooth contact and gear metallurgy. This is followed by sections describing the important points of gear lubrication, the measurement of the backlash, and the necessary factors for starting the failure analysis. Next, the article explains various gear failure causes, including wear, scuffing, Hertzian fatigue, cracking, fracture, and bending fatigue, and finally presents examples of gear and reducer failure analysis.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001818
EISBN: 978-1-62708-241-9
... 2765 mm (2.765 m) 4. Wall thickness 3 mm (0.118 in.) 5. Seamless or welded Welded 6. Date of commissioning December, 1989 7. Operating pressure (psi) Open to atmosphere 8. Operating temperature (°C) Fully exposed to gas fired flame a 9. Operation Continuous 10...
Abstract
A sleeve-shaped fire shield that operates inside one of two burner trains in an oil and gas processing unit ruptured after 15 y of service. A detailed analysis was conducted to determine how and why the sleeve failed. The investigation included visual inspection, chemical and gas analysis, mechanical property testing, stereomicroscopy, and metallographic examination. The fire sleeves are fabricated from 3-mm thick plate made of Incoloy 800 rolled into 540-mm diam sections welded along the seam. Three such sections are joined together by circumferential welds to form a single 2.8 m sleeve. The findings from the investigation indicated that internal oxidation corrosion, driven by high temperatures, was the primary cause of failure. Prolonged exposure to temperatures up to 760 °C resulted in sensitization of the material, making it vulnerable to grain boundary attack. This led to significant deterioration of the grain boundaries, causing extensive grain loss (grain dropping) and the subsequent thinning of sleeve walls. Prior to failure, some portions of the sleeve were only 1.6 mm thick, nearly half their original thickness.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001722
EISBN: 978-1-62708-236-5
... not exceeding 65 t.p.s.i., or have been nitrided, no further heat treatment is normally required before plating. In the case of parts made from steel hardened and tempered to a tensile range exceeding 65 t.p.s.i., or which have been carburised, flame-or induction-hardened, or carbonitrided, it is preferable...
Abstract
The crankshaft of a 37.5-hp, 3-cylinder oil engine was examined. The engine had been dismantled for the purpose of a general overhaul and in the course of this work the crankpins were chromium-plated before regrinding. The engine was returned to service and after running for 290 h the crankshaft broke at the junction of the No. 3 crankpin and the crankweb nearest to the flywheel. A typical fatigue crack had originated at a number of points in the root of the fillet to the web. In its early stages it ran slightly into the web but turned back to the pin when it encountered the oil hole. The shaft had been made from a heat-treated alloy steel. The thickness of the plating was approximately 0.025 in. and numerous cracks were visible in it, several of which had given rise to cracks in the steel below. The primary cause of the crankshaft failure was the plating of the crankpins. The presence of the grooves alone would result in considerable intensification of stress in zones which are normally highly stressed, while the crazy cracking introduced a multiplicity of stress-raisers of a type almost ideal from the point of view of initiating fatigue cracks.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001484
EISBN: 978-1-62708-229-7
... alloy in the surface layer of oxide scale. Beneath this layer a hardened region showing martensite needles in a matrix of austenite was evident, the structure changing through “troostitic constituents” to the overheated material of the wheel. Structural changes of a similar nature occurred at the flame...
Abstract
Fusing of the switch contacts of a boiler feed pump drive motor led to the failure of a turbine. After rubbing of most of the Ni-Cr steel LP wheels had occurred, due to the admission of water carried over with the steam, a copper-rich alloy from the interstage gland rings melted, penetrated the wheel material, and gave rise to radial and circumferential cracking in four of the LP wheels. It was concluded that when the rotor moved axially and the wheels came into contact with the diaphragms there was a tendency for the former to dish, with the development of both radial and circumferential tensile stresses on the side in contact with the adjacent diaphragm. In the presence of the molten copper-rich alloy, these stresses gave rise to severe hot cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001575
EISBN: 978-1-62708-217-4
... discoloration (particularly on the driven gear) were also observed. The gears were made from 32Cr-Mo-V13 steel, hardened and nitrided to 750 to 950 HV. Micrographic inspection of the gear teeth revealed microstructural changes that, in context, appear to be the result of friction heating. The spacers consist...
Abstract
An oil scavenge pump was found to have failed when a protective shear neck fractured during the start of a jet engine. Visual inspection revealed that the driven gear in one of the bearing compartments was frozen as was the corresponding drive gear. Spacer wear and thermal discoloration (particularly on the driven gear) were also observed. The gears were made from 32Cr-Mo-V13 steel, hardened and nitrided to 750 to 950 HV. Micrographic inspection of the gear teeth revealed microstructural changes that, in context, appear to be the result of friction heating. The spacers consist of Cu alloy (AMS4845) bushings force fit into AA2024-T3 Al alloy spacing elements. It was found that uncontrolled fit interference between the two components had led to Cu alloy overstress. Thermal cycling under operating conditions yielded the material. The dilation was directed inward to the shaft, however, because the bushing had only a few microns of clearance. The effect caused the oil to squeeze out, resulting in metal-to-metal contact, and ultimately failure.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
..., notch toughness, corrosion resistance, weldability, and machinability. In most applications, many materials may be satisfactory for a particular part, but only a few materials will be optimum. In hardenable steels, tempered martensite has greater fatigue resistance than mixed structures. From...
Abstract
The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
..., many materials may be satisfactory for a particular part, but only a few materials will be optimum. In hardenable steels, tempered martensite has greater fatigue resistance than mixed structures. From a practical and theoretical aspect, alloy steels are a better material selection than carbon...
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.
1