1-20 of 53 Search Results for

flame hardening

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001212
EISBN: 978-1-62708-235-8
... Abstract Operation handles produced from C45 steel showed many fine cracks at the flame hardened noses. The cracks ran from the corners of indentations caused by the tool during alignment. Metallographic investigation showed the nose was overheated during flame hardening. It was concluded...
Image
Published: 01 June 2019
Fig. 1 Handle etched with 10% nital to show the flame hardened zone (dark). 1 × More
Image
Published: 01 June 2019
Fig. 4 Structure of the flame hardened top. 500 × More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047991
EISBN: 978-1-62708-225-9
... Abstract Deformation, surface cracking, and spalling on the raceway of the outer ring (made of 4140 steel) of a large bearing caused it to be replaced from a radar antenna. The raceway surfaces were to be flame hardened to 55 HRC minimum and 50 HRC 3.2 mm below the surface, according...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001308
EISBN: 978-1-62708-215-0
... to exist in this particular rail from fit-up distortion, flame-hardening treatment, and weld repairs. Circumstances Leading to Failure The first crack in the rail appeared immediately following installation and heat treatment. The rail flange separated with a loud report; no load had yet been...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001444
EISBN: 978-1-62708-231-0
... and its presence in this instance is due to the fact that, during the flame-cutting operation a narrow band of material on each side of the cut was raised above the hardening temperature and when the torch had passed, the rate of abstraction of heat from this zone by conduction into the cold mass...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048091
EISBN: 978-1-62708-224-2
... Abstract A section from a stop-block guide fell to the floor on a crane runway after it failed. A brittle crystalline-type break was disclosed by examination of the fracture surface. The point of initiation was in a hardened heat-affected layer that had developed during flame cutting...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048064
EISBN: 978-1-62708-224-2
... in a hardened martensitic zone at the torch-cut surface and had extended up to the coarse pearlite structure beneath the martensitic zone. The fatigue fracture was concluded to have initiated in the brittle martensitic surface while failure was contributed by the 25% overload. As a corrective measure, the coil...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0047406
EISBN: 978-1-62708-232-7
... to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001478
EISBN: 978-1-62708-220-4
.... They could have conceivably arisen as a result of accidental heating by the flame of the brazing torch. If the temperature had been raised locally to above the lower critical — 730°C the region would harden subsequently due to the rapid cooling which would occur when the flame was removed. The cracks which...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... in large steam turbines in Russia and Switzerland, owing to their high strength-to-weight ratio and better resistance to erosion and corrosion than 12% Cr steel. All of the commonly used blade alloys are protected from liquid-droplet impingement in the last blade row by local hardening (by flame...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001723
EISBN: 978-1-62708-221-1
... initiated at the end of the plates, where they had been sheared to length, and the resulting work-hardening of the material had led to strain-age-embrittlement, possibly as a result of the heating imparted by the operation of flame-cutting the slot. Tests showed that the steel was susceptible...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006820
EISBN: 978-1-62708-329-4
... that ranges between 0.12 and 8 mm (0.005 and 0.315 in.) or nitrided with a case thickness between 0.2 and 0.6 mm (0.008 and 0.024 in.). They may also be flame or induction hardened. After World War II, when Europe rebuilt their manufacturing facilities, there was a transition to using case-hardened...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001818
EISBN: 978-1-62708-241-9
... the fire tube sleeve was under continuous operations and fully exposed to gas fired flame at atmospheric pressure. Heater Treater contains two fire tubes having inner sleeves. To identify the mechanism of failure, detailed laboratory and analytical investigations were carried out to characterize...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001722
EISBN: 978-1-62708-236-5
... not exceeding 65 t.p.s.i., or have been nitrided, no further heat treatment is normally required before plating. In the case of parts made from steel hardened and tempered to a tensile range exceeding 65 t.p.s.i., or which have been carburised, flame-or induction-hardened, or carbonitrided, it is preferable...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001484
EISBN: 978-1-62708-229-7
... alloy in the surface layer of oxide scale. Beneath this layer a hardened region showing martensite needles in a matrix of austenite was evident, the structure changing through “troostitic constituents” to the overheated material of the wheel. Structural changes of a similar nature occurred at the flame...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001575
EISBN: 978-1-62708-217-4
... discoloration (particularly on the driven gear) were also observed. The gears were made from 32Cr-Mo-V13 steel, hardened and nitrided to 750 to 950 HV. Micrographic inspection of the gear teeth revealed microstructural changes that, in context, appear to be the result of friction heating. The spacers consist...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
... that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
..., notch toughness, corrosion resistance, weldability, and machinability. In most applications, many materials may be satisfactory for a particular part, but only a few materials will be optimum. In hardenable steels, tempered martensite has greater fatigue resistance than mixed structures. From...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
..., many materials may be satisfactory for a particular part, but only a few materials will be optimum. In hardenable steels, tempered martensite has greater fatigue resistance than mixed structures. From a practical and theoretical aspect, alloy steels are a better material selection than carbon...