1-20 of 258 Search Results for

finishing

Sort by
Image
Published: 01 December 2019
Fig. 2 Evolution of recrystallization kinetics during the finishing passes of steels with and without Nb More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089646
EISBN: 978-1-62708-235-8
... the failure. Recommendations included establishing closer control of chemical composition and foundry casting practices to alleviate the carbon-flotation form of segregation. Additionally, some nonmetallurgical practices in journal-finishing techniques were suggested to ensure optimal surface finish...
Image
Published: 01 January 2002
Fig. 12(a) Two AISI A6 tool steel parts that shattered during finish (abusive) grinding. See also Fig. 12(b) More
Image
Published: 30 August 2021
Fig. 31 Surface finish modification factor vs. tensile strength or Brinell hardness for different surface finishes. Adapted from Ref 90 More
Image
Published: 30 August 2021
Fig. 12 (a) Two AISI A6 tool steel parts that shattered during finish (abusive) grinding. (b) Micrograph of the ground parts showing a reaustenitized region (white) and a back-tempered zone (dark) at the ground surface. Etched with 3% nital. Original magnification: 70× More
Image
Published: 15 January 2021
Fig. 4 Example of correction factor for surface finish for steels. Source: Ref 1 More
Image
Published: 01 June 2019
Fig. 5 Comparison of the surface finish of Jewelry 2. (a) Initial as-received condition. (b) After electropolishing in perchloric acid (ethanol) solution, 35 V for 10 s. Scanning electron microscope, 100× More
Image
Published: 01 December 1993
Fig. 1 Preforged and finish forged parts, showing cracks and bursts at various locations. More
Image
Published: 15 May 2022
Fig. 6 Rebuilding the finished product assembly from the individual piece part files will help the design team to analyze the assembly process and find potential problems before investing in tooling. More
Image
Published: 01 December 2019
Fig. 7 Close-up view of the final fracture. Note the rough finish, slant morphology, and the absence of beach marks. This figure is proposed as cover art with the caption: stage III fatigue on the fracture of a drive shaft More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046222
EISBN: 978-1-62708-217-4
... Abstract The spindle of a helicopter-rotor blade fractured after 7383 h of flight service. At every overhaul (the spindle that failed was overhauled six times and reworked twice), any spindle that showed wear was reworked by grinding the shank to 0.1 mm (0.004 in.) under the finished diam...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001610
EISBN: 978-1-62708-222-8
.... The lack of resistance to pitting corrosion associated with the poor surface finishing of the stainless steel jewelry may induce localized corrosion, promoting the release of cytotoxic metallic ions (such as Cr, Ni, and Mo) in the local tissue, which can promote several types of adverse effects...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
..., type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
...-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0092155
EISBN: 978-1-62708-221-1
... and the adjacent splined coupling sleeve. Specifications included that the gear and coupling be made from 4140 steel bar oil quenched and tempered to a hardness of 265 to 290 HB (equivalent to 27 to 31 HRC) and that the finish-machined parts be single-stage gas nitrided to produce a total case depth of 0.5 mm...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0048596
EISBN: 978-1-62708-221-1
...-bolts fractured in fatigue because the bolt material had poor hardenability relative to the diam of the bolts. The bolt material was changed from 1045 steel to 1527 steel, a warm-finished low-alloy steel. The diameter of the bolts was reduced to 27.2 mm and the threads were rolled rather than cut...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0090994
EISBN: 978-1-62708-225-9
... strength range was 1689 to 1793 MPa (245 to 260 ksi). The finished springs were to be shot peened for greater fatigue resistance. Investigation (visual inspection, 3x images, 2% nital etched 148x SEM images, chemical analysis, hardness testing, and EDS analysis) supported the conclusion that the springs...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0046205
EISBN: 978-1-62708-225-9
... include redesign of the fillet radius to a minimum of 1.6 mm (0.06 in.) and a maximum surface finish in the spline area of 0.8 microns. Material for the shafts should be modified to a nickel alloy steel, heat treated to a hardness of 28 to 32 HRC before machining. Ductile brittle transition Shafts...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046870
EISBN: 978-1-62708-217-4
... static radial, cyclic torsional, and cyclic bending loads. Cracking originated at corrosion pits on the smoothly finished surface and propagated as multiple small corrosion-fatigue cracks from separate nuclei. The originally noncorrosive environment (hydraulic oil) became corrosive in service because...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001552
EISBN: 978-1-62708-217-4
... generation which induced grinding cracks and grinding burn. Tensional stresses resulting from grinding developed in a thin surface layer. On another crankshaft, chromium plating introduced undesirable residual tensile stresses. Such plating is an unsatisfactory finish for crankshafts of aircraft engines...