Skip Nav Destination
Close Modal
Search Results for
field ion microscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 49 Search Results for
field ion microscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001379
EISBN: 978-1-62708-215-0
... attained nor exceeded prior to the failure. A total of 69 bolts from inventory and the field were tested by magnetic particle inspection. One inventory bolt failed because of a transverse crack near the head-to-shank radius. It was deduced that either a 100% magnetic particle inspection had not been...
Abstract
The heads of two AISI 8740 steel bolts severed while being installed into an Army tank recoil mechanism. Both broke into two pieces at the head-to-shank radius and the required torque value had not been attained nor exceeded prior to the failure. A total of 69 bolts from inventory and the field were tested by magnetic particle inspection. One inventory bolt failed because of a transverse crack near the head-to-shank radius. It was deduced that either a 100% magnetic particle inspection had not been conducted during bolt manufacturing, or the crack went undetected during the original inspection. Optical and electron microscopy of the broken bolts revealed topographies and the presence of black oxide consistent with quench cracking. The two bolts failed during installation due to the presence of pre-existing quench cracks. Recommendations to prevent future failures include: ensuring that 100% magnetic particle inspections are conducted after bolts are tempered; using dull cadmium plate or an alternative to the electrode position process, such as vacuum cadmium plate or ion-plate or ion-plated aluminum, to mitigate the potential for delayed failures due to hydrogen embrittlement or stress-corrosion cracking; ensuring that the radius at the shoulder/shank interface conforms to specifications; and replacing all existing bolts with new or reinspected inventory bolts.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001832
EISBN: 978-1-62708-241-9
... Incidents Introduction Observations and Findings Optical Microscopy Fracture Surface Analysis Macroscopic Observations Oxide Analysis Deposit Analysis Analysis of Metallic Ions Analysis of Anionic Species Failure Analysis Liquid Metal Embrittlement Hydrogen Embrittlement...
Abstract
High-level radioactive wastes generated during the processing of nuclear materials are kept in large underground storage tanks made of low-carbon steel. The wastes consist primarily of concentrated solutions of sodium nitrate and sodium hydroxide. Each of the tanks is equipped with a purge ventilation system designed to continuously remove hydrogen gas and vapors without letting radionuclides escape. Several intergranular cracks were discovered in the vent pipe of one such system. The pipe, made of galvanized steel sheet, connects to an exhaust fan downstream of high-efficiency particulate air filters. The failure analysis investigation concluded that nitrate-induced stress-corrosion cracking was the cause of the failure.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
...-induced dissociation; SED, secondary electron detector; GCIB, gas cluster ion beam; FIB, focused ion beam; LMIG, liquid metal ion gun. Courtesy of Physical Electronics Inc., Chanhassen, MN Fig. 4 Nonconductive material imaged using (a) conventional scanning electron microscopy, (b) low-pressure...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001561
EISBN: 978-1-62708-229-7
... and weld material, in addition to fractography, EPR testing and optical microscopy in discerning the mode of failure. Various effects of Cl-, O2 and MnS are discussed. Results indicated that the cause of failure was the severe sensitization coupled with probable contamination by S and possibly by Cl ions...
Abstract
An intergranular stress-corrosion cracking failure of 304 stainless steel pipe in 2000 ppm B as H3BO3 + H2O at 100 deg C was investigated. Constant extension rate testing produced an intergranular type failure in material in air. Chemical analysis was performed on both the base metal and weld material, in addition to fractography, EPR testing and optical microscopy in discerning the mode of failure. Various effects of Cl-, O2 and MnS are discussed. Results indicated that the cause of failure was the severe sensitization coupled with probable contamination by S and possibly by Cl ions.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
... Abstract This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each of these techniques...
Abstract
This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each of these techniques, the types of data produced from each, and some typical applications. The article explains the strengths of AES, XPS, and TOF-SIMS based on data obtained from the surface of a slightly corroded stainless steel sheet.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... a high vacuum to be maintained in the gun area while samples are being inserted or removed. Separate pumps (such as titanium ion-getter pumps) attached to the gun continue to operate while the sample chamber is vented to atmosphere. These features are standard for field-emission and LaB 6 guns but add...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
.... Separate pumps (such as titanium ion-getter pumps) attached to the gun continue to operate while the sample chamber is vented to atmosphere. These features are standard for field emission and LaB 6 guns and add extra complexity (and cost) to these systems. Separate pumps and an isolated gun chamber...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... Abstract This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important...
Abstract
This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important attributes are listed for preliminary insight into the strengths and limitations of these techniques for chemical characterization of surfaces. The article describes the basic theory behind each of the different techniques, the types of data produced from each, and some typical applications. Also discussed are the different types of samples that can be analyzed and the special sample-handling procedures that must be implemented when preparing to do failure analysis using these surface-sensitive techniques. Data obtained from different material defects are presented for each of the techniques. The examples presented highlight the typical data sets and strengths of each technique.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048814
EISBN: 978-1-62708-229-7
.... Copper ions in solution should be eliminated or minimized. Chlorides Nuclear power generation Pressure vessels Welded joints ASME SA302-8 Stress-corrosion cracking A small leak was found in a nuclear steam-generator vessel constructed of 100-mm (4-in.) thick SA302, grade B, steel [0.25% C...
Abstract
A nuclear steam-generator vessel constructed of 100-mm thick SA302, grade B, steel was found to have a small leak. The leak originated in the circumferential closure weld joining the transition cone to the upper shell. The welds had been fabricated from the outside by the submerged arc process with a backing strip. The backing was back gouged off, and the weld was completed from the inside with E8018-C3 electrodes by the shielded metal arc process. Striations of the type normally associated with progressive or fatigue-type failures including beach marks that allowed tracing the origin of the fracture to the pits on the inner surface of the vessel were revealed. Copper deposits with zinc were revealed by EDS examination of discolorations. Pitting was revealed to have been caused by poor oxygen control in the steam generators and release of chloride into the steam generators. It was concluded by series of controlled crack-propagation-rate stress-corrosion tests that A302, grade B, steel was susceptible to transgranular stress-corrosion attack in constant extension rate testing with as low as 1 ppm chloride present. It was recommended to maintain the coolant environment low in oxygen and chloride. Copper ions in solution should be eliminated or minimized.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006765
EISBN: 978-1-62708-295-2
... thermoplastic resin. (d) Electroless nickel plated and mounted in thermosetting epoxy resin (resin not in the field of view). All four specimens were prepared in the same holder and were etched with nital. The arrows point to the nitrided surface layer. Fig. 4 Light micrograph of an ion-nitrided H13...
Abstract
Metallographic examination is one of the most important procedures used by metallurgists in failure analysis. Typically, the light microscope (LM) is used to assess the nature of the material microstructure and its influence on the failure mechanism. Microstructural examination can be performed with the scanning electron microscope (SEM) over the same magnification range as the LM, but examination with the latter is more efficient. This article describes the major operations in the preparation of metallographic specimens, namely sectioning, mounting, grinding, polishing, and etching. The influence of microstructures on the failure of a material is discussed and examples of such work are given to illustrate the value of light microscopy. In addition, information on heat-treatment-related failures, fabrication-/machining-related failures, and service failures is provided, with examples created using light microscopy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... analysis laboratory to have sampling kits available and with personnel who may encounter a failure in the field. Such a kit should contain blank/new sampling materials such as pristine swabs, wipes, vials, and conductive microscopy tape that have previously been characterized in the laboratory to save time...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003532
EISBN: 978-1-62708-180-1
..., and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy. electrolytic polishing failure analysis field metallography fracture...
Abstract
This article provides a discussion on the metallographic techniques used for failure analysis, and on fracture examination in materials, with illustrations. It discusses various metallographic specimen preparation techniques, namely, sectioning, mounting, grinding, polishing, and electrolytic polishing. The article also describes the microstructure examination of various materials, with emphasis on failure analysis, and concludes with information on the examination of replicas with light microscopy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
... electron microscopy (TEM). The limited depth of field available in the light microscope is such that it is difficult to record fracture surface features for rough surfaces other than at low magnification. Hence, most microfractographic examinations today are made using the SEM, which has a great depth...
Abstract
This article focuses on the visual or macroscopic examination of damaged materials and interpretation of damage and fracture features. Analytical tools available for evaluations of corrosion and wear damage features include energy dispersive spectroscopy, electron probe microanalysis, Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article concludes with a review of the evaluation of polymers and ceramic materials in failure analysis.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... involving replicas that can be examined by light microscopy or by scanning or transmission electron microscopy (TEM). The limited depth of field available in the light microscope is such that it is difficult to record fracture surface features for rough surfaces other than at low magnification. Hence, most...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... reaction occurs in which hydrogen gas is evolved and the zinc dissolves, forming an acidic aqueous solution of zinc chloride (ZnCl 2 ): (Eq 1) Zn + 2 HCl → Zn Cl 2 + H 2 Because the chloride ion is not involved in the reaction, this equation can be written in a simplified form...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001339
EISBN: 978-1-62708-215-0
... of the cracks, the intergranular path, and the considerable amount of branching. Scanning electron microscopy was not performed on weld W-19, which was excavated by high-speed cutting in the field. The appearance of this weld is described further in the next section. Figure 8 and 9 show the fracture...
Abstract
The failure mode of through-wall cracking of a butt weld in a 5083-O aluminum alloy piping system in an ethylene plant was identified as mercury liquid metal embrittlement. As a result of this finding, 226 of the more than 400 butt welds in the system were ultrasonically inspected for cracking. One additional weld was found that had been degraded by mercury. A welding team experienced in repairing mercury contaminated piping was recruited to make the repairs. Corrective action included the installation of a sulfur-impregnated charcoal mercury-removal bed and replacement of the aluminum equipment that was in operation prior to the installation of the mercury-removal bed.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001054
EISBN: 978-1-62708-214-3
... Pertinent Specifications Performance of Other Parts in Same or Similar Service Specimen Selection Testing Procedure and Results Discussion Surface Examination Macrofractography Examination by optical and scanning electron microscopy (SEM) showed that the specimens tested in dry...
Abstract
Silver solid-state bonded components containing uranium failed under zero or low applied load several years after manufacture. The final operation in their manufacture was a proof loading that applied a sustained tensile stress to the bond, which all components passed. The components comprised circular cylinders fabricated by plating a thin layer of silver on each of the contact surfaces (uranium and stainless steel) and pressing the parts together at elevated temperature to solid-state bond the two silver surfaces. The manufacturing process produced a high level of residual stress at the bond. The failures appeared to be predominantly located between the silver layer and the uranium substrate. Normal fracture location of specimens taken from similar components was at the silver/silver bond interface. Laboratory testing revealed that the uranium/silver joint was susceptible to premature failure by stress-corrosion cracking under sustained loading if the atmosphere was saturated with water vapor.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001775
EISBN: 978-1-62708-241-9
... with caustic solution, it would be most unlikely for the NaOH concentration to exceed 75 wt.%, even if some degree of drying is assumed. Furthermore, scenario number 4 should be excluded, because the presence of Cu ++ ions in the stream was not confirmed by any of the measurements performed...
Abstract
A bent Ni-Cu Monel 400 alloy tube, which operated as part of a pipeline in a petrochemical distillery, failed by through-thickness cracking. The pipeline was used to carry a stream of gaseous hydrocarbons containing hydrochloric acid (HCl) into a reaction tower. The tower provided a caustic solution (NaOH) to remove HCl from the stream, before the latter was directed to a burner. Metallographic examination showed that the cracks were intergranular and were frequently branched. Although nominal chemical composition of the component was found within the specified range, energy dispersive x-ray analysis (EDXA) indicated significant segregation of sulfur and chlorine along the grain boundaries. Failure was attributed to hypochlorous-acid (HClO)-induced stress-corrosion cracking (SCC). The HClO was formed by the reaction of HCl with atmospheric O 2 that entered the tube during shutdowns and startups. Residual stresses, originating from in situ bend forming of the tube during assembly of the line, provided a driving force for crack growth, and the segregation of sulfur on grain boundaries made the material more susceptible to cracking.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... is evolved and the zinc dissolves, forming an acidic aqueous solution of zinc chloride. The reaction is: (Eq 1) Zn + 2 HCl → ZnCl 2 + H 2 Since the chloride ion is not involved in the reaction, this equation can be written in the simplified form: (Eq 2) Zn + 2 H...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003520
EISBN: 978-1-62708-180-1
... Abstract This article outlines the basic steps to be followed and the range of techniques available for failure analysis, namely, background data assembling, visual examination, microfractography, chemical analysis, metallographic examination, electron microscopy, electron microprobe analysis...
Abstract
This article outlines the basic steps to be followed and the range of techniques available for failure analysis, namely, background data assembling, visual examination, microfractography, chemical analysis, metallographic examination, electron microscopy, electron microprobe analysis, X-ray techniques, and simulations. It also describes the steps for analyzing the data, preparing the report, preservation of evidence, and follow-up on recommendations.
1