1-20 of 66 Search Results for

ferrous components

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001672
EISBN: 978-1-62708-236-5
... Abstract Failed ferrous components were analyzed from a crane that operated on an offshore platform. The crane failed during operation and fell into the sea. The brake spring on the boom hoist was found to have fractured in four places. The spring contained a line defect (seam...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001625
EISBN: 978-1-62708-218-1
... with a ferrous material, such as a steel chip. Chemical analysis Coating defects Discoloration Motorcycle components Polymer (Other, miscellaneous, or unspecified) failure Two acrylic-coated polymeric motorcycle components exhibited fisheye blemishes after painting. Only one imperfection...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001755
EISBN: 978-1-62708-241-9
...-sulfur analyzer. The results for the ferrous materials are given in Table 1 and for the nonferrous materials in Table 2 . Chemical Analysis–Ferrous Materials Table 1 Chemical Analysis–Ferrous Materials Component Element, wt.% Fe C W Cr V Mn S Inner race...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... a metallurgical failure analysis process. Alloy/materials selection plays a critical role during the design of components due to various advantages and disadvantages each alloy/material may have under specific service conditions. Furthermore, individual elements within the alloys can have either positive...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001764
EISBN: 978-1-62708-241-9
... showing the ratchet marks, indicating multiple fatigue initiation sites around the circumference of the shaft. Figure 6 shows the area examined in the scanning electron microscope (SEM). Ductile dimpling was seen near the inner diameter of the female component of the drive shaft, as shown in Fig. 7...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001684
EISBN: 978-1-62708-225-9
.... The examination centered on corrosion of the brass components. The seat and shaft were alpha brass, with a hardness of 64 and 79 DPH, respectively. A nut held the shaft onto the seat, and was alpha-beta brass with a hardness of 197 DPH. Welded on the end of the shaft was a ring of hard (DPH 294) alpha-beta brass...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001387
EISBN: 978-1-62708-215-0
... material, such as nickel, nickel-base alloy, or stainless steel, was recommended. Anodes Electrolytic cells Nuclear reactor components 1010 ASTM A519 MT1010 UNS G10100 Uniform corrosion Background Several electrolysis cells in a heavy-water up-grading plant began malfunctioning because...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001760
EISBN: 978-1-62708-241-9
... Abstract This article presents a failure analysis of an aluminum cylinder head on an automotive engine. During an endurance test, a crack initiated from the interior wall of a hole in the center of the cylinder head, then propagated through the entire thickness of the component. Metallurgical...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001828
EISBN: 978-1-62708-241-9
... environment will cause stress corrosion of the material under static loading conditions, the process may be termed stress-corrosion fatigue. Controlled environment and material properties play a dominant role in SCF. For ferrous metals, the carbon content and the hardness of the component are also...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... −   → 2 Fe ( OH ) 2 Ferrous (Fe 2+ ) hydroxide precipitates from solution. However, this compound is unstable in oxygenated solutions and is oxidized to the ferric (Fe 3+ ) salt: (Eq 17) 2 Fe ( OH ) 2 + H 2 O + 1 2 O 2 → 2 Fe ( OH ) 3...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001103
EISBN: 978-1-62708-214-3
... in the bolts, which would have made them much more vulnerable to stress-corrosion attack. The large number of branching cracks around the site of failure suggested the presence of an extremely active corrosion component, because the propagation of the primary crack path would have reduced the high state...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... Abstract This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... + + 4 OH − → 2 Fe ( OH ) 2 Ferrous ( Fe 2 + ) hydroxide precipitates from solution. However, this compound is unstable in oxygenated solutions and is oxidized to the ferric ( Fe 3 + ) salt: (Eq 17) 2 Fe ( OH ) 2 + H 2 O + 1 2 O 2...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003560
EISBN: 978-1-62708-180-1
... Abstract Wear, a form of surface deterioration, is a factor in a majority of component failures. This article is primarily concerned with abrasive wear mechanisms such as plastic deformation, cutting, and fragmentation which, at their core, stem from a difference in hardness between contacting...
Book Chapter

Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... Abstract Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003520
EISBN: 978-1-62708-180-1
... service abuses Improper maintenance and repair Environment-material interactions Not all failures are catastrophic. Many failures involve a gradual degradation of properties or excessive deformation or wear until the component is no longer functional long before its design life is reached...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
...-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... as the cause of all overload failure, because it does not include failures in which embrittlement or other causes result in fracture under normal loading. The purpose of engineering failure analysis is to identify the root cause of component or system failure and to prevent similar occurrences. Underdesign...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... Abstract This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... embrittlement or other causes result in fracture under normal loading. The purpose of engineering failure analysis is to identify the root cause of component or system failure and to prevent similar occurrences. Underdesign is just one potential cause of an overload failure, and the time-consuming...