1-20 of 137 Search Results for

ferritic stainless steel

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001609
EISBN: 978-1-62708-229-7
...Abstract Abstract Alloy 430 stainless steel tube-to-header welds failed in a heat recovery steam generator (HRSG) within one year of commissioning. The HRSG was in a combined cycle, gas-fired, combustion turbine electric power plant. Alloy 430, a 17% Cr ferritic stainless steel, was selected...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
... and corrosion performance of the new generation of ferritic stainless steels, it is important to avoid the pickup of the interstitial elements carbon, nitrogen, oxygen, and hydrogen. In this particular case, the vendor used a flow rate intended for a smaller welding torch nozzle. The metal supplier recommended...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0065826
EISBN: 978-1-62708-233-4
..., failed after a week by transgranular SCC. Annealed type 430 ferritic stainless steel was subsequently suggested to prevent further failures. Basic oxygen furnaces Materials selection Precipitator wires 304 UNS S30400 430 UNS 54300 1008 UNS G10080 Corrosion fatigue Stress-corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0091048
EISBN: 978-1-62708-235-8
...Abstract Abstract A welded ferritic stainless steel heat exchanger cracked prior to service. The welding filler metal was identified as an austenitic stainless steel and the joining method as gas tungsten arc welding. Investigation (visual inspection, SEM images, 5.9x images, and 8.9x/119x...
Book Chapter

Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001412
EISBN: 978-1-62708-229-7
.... Non-metallic inclusions in the blade material playing a minor part. Cracking (fracturing) Loads (forces) Nonmetallic inclusions Stresses Turbine blades Vibration Ferritic stainless steel (Other, general, or unspecified) fracture The failure described occurred in a 45,000 kW, 3,000...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001566
EISBN: 978-1-62708-229-7
... 367, Grades C3/C4, or ferritic stainless steel alloy per ASTM 182, Grade FXM27. Boilers Chlorides Diffuser nozzles Thermal stresses CF-8 Stress-corrosion cracking The desuperheater diffuser nozzle in the steam supply line failed within 9 months of service in a 8.25 MN/m 2 (1200 psig...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001074
EISBN: 978-1-62708-214-3
...Abstract Abstract A cast housing, part of a multi-shaft yoking mechanism, failed during assembly and installation of the equipment in which it was to be used. The housing, or yoke body, was cast from AISI 420 grade ferritic stainless steel. Analysis revealed that the failure was caused...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... (UNS S43020) free-machining stainless steel. Alloy 430F is a non heat-treatable ferritic stainless steel sulphurized to increase machinability. Except in thin sections, it exhibits a ductile to brittle transition which can result in low fracture toughness at room temperature ( 1 ). This steel...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048331
EISBN: 978-1-62708-229-7
... to austenitic stainless steel tubing (type 321 stainless steel (ASME SA-213, grade TP321H)). The surface temperature of the tube was found to be higher than operating temperature in use earlier. The ferritic steel portion of the tube was found to be longitudinally split and heavily corroded in the region...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001324
EISBN: 978-1-62708-215-0
... by grinding, polishing, and etching. The prepared sections were examined using a metallurgical microscope to assess microstructure and internal and external surface conditions. Figure 4 shows the microstructure of the base metal, which was typical of an annealed ferritic stainless steel. Figure 5 shows...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... steel chemical analysis copper alloys crack initiation crack propagation duplex stainless steel ferritic stainless steel fracture surface characteristics low alloy steel macroscopic examination magnesium alloys maraging steel martensitic stainless steel metallographic analysis metalworking...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... aluminum alone normally is not polarized to its pitting potential. In many environments, aluminum can be used in contact with chromium or stainless steels with only slight acceleration of corrosion; chromium and stainless steels are easily polarized cathodically in mild environments, so...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... these conditions. Corrosion of aluminum in contact with more cathodic metals is much less severe in solutions of most nonhalide salts, in which aluminum alone normally is not polarized to its pitting potential. In many environments, aluminum can be used in contact with chromium or stainless steels with only...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001047
EISBN: 978-1-62708-214-3
... the wall the tube core. Metallography Microstructural Analysis Microstructural analysis confirmed that the tube sheet was fabricated from E-Brite (ferritic stainless steel) that was explosively bonded to Ferralium (duplex stainless steel). The microstructures of both alloys and of the weld...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
... by copper occurring during welding and joining processes applied to steel. One such study involved the influence of copper deposition by welding of austenitic and ferritic stainless steels ( Ref 37 ). In stainless steels with mixed ferritic-austenitic structures, the presence of the stable ferrite phase...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001819
EISBN: 978-1-62708-241-9
... mentioned as a possible option to replace more traditional stainless steels. A NACE/ISO standard describes the requirements for such applications [ 1 ]. DSSs have a two-phase microstructure (austenite and ferrite) and have some advantages, mainly higher strength, higher resistance to intergranular corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001683
EISBN: 978-1-62708-234-1
... on ferrite and austenite phases differ. 200×. The microstructure of a weld in austenitic stainless steel is two phase, with about 10% ferrite typically included by design into the austenitic cast structure. Weld filler alloy usually contains a higher chromium content, both to enhance general corrosion...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001568
EISBN: 978-1-62708-230-3
...) resulting from slow cooling of the casting to avoid large residual stresses. The roll manufacturer recommended a proprietary ferritic/austenitic stainless steel as the replacement material for the rolls. Chlorides Paper machines Suction rolls CF-8M Intergranular fracture Stress-corrosion cracking...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... and residential plumbing systems, SCC can occur in brass plumbing components that are used in a hard temper condition or that have residual stresses from final finishing, such as rolled threads. Stainless steel clamps used in residential cross-linked polyethylene (PEX) plumbing systems exhibit SCC when moisture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001184
EISBN: 978-1-62708-235-8
...Abstract Abstract Examples of metallic inclusions in steels of various types are presented. The structure of an inclusion in an annealed Fe-1C-1.5Cr steel consisted of ferrite with lamellar pearlite. The carbon content of the inclusion was therefore considerably lower than that of the chromium...