Skip Nav Destination
Close Modal
By
Sara Fernandez, María José Quintana, José Ovidio García, Luis Felipe Verdeja, Roberto González ...
Search Results for
ferrites
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 349 Search Results for
ferrites
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091402
EISBN: 978-1-62708-234-1
... treatment for ferritizing malleable iron. This resulted in lower resistance to erosion and corrosion than pearlitic malleable iron. Recommendations included replacing the elbows with heat-treated fittings with a pearlitic malleable microstructure. Impingement erosion Pearlite Pipe bends ASTM A47...
Abstract
Leakage was detected in a malleable iron elbow (ASTM A 47, grade 35018) after only three months in service. Life expectancy for the elbow was 12 to 24 months. The piping alternately supplied steam and cooling water to a tire-curing press. The supply line and elbow were subjected to 14 heating and cooling cycles per hour for at least 16 h/day, or a minimum of 224 cycles/day. Steam and water pressure were 1035 kPa (150 psi) and 895 kPa (130 psi) respectively, and water-flow rate was estimated to be 1325 L/min (350 gal/min) based on pump capacity. Water-inlet temperature was 10 to 15 deg C (50 to 60 deg F) and outlet temperature was 50 to 60 deg C (120 to 140 deg F). The pH of the water was 6.9. Investigation (visual inspection, chemical analysis, and 67x nital etched micrographs) supported the conclusion that the elbows had been given the usual annealing and normalizing treatment for ferritizing malleable iron. This resulted in lower resistance to erosion and corrosion than pearlitic malleable iron. Recommendations included replacing the elbows with heat-treated fittings with a pearlitic malleable microstructure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048772
EISBN: 978-1-62708-220-4
...Abstract Abstract A return bend (made from ASTM A213, grade T11, ferritic steel) from a triolefin-unit heater ruptured after two years in service. The unit operated at 2410 kPa, with a hydrocarbon feed stream (85% propylene) entering at 260 to 290 deg C and leaving at 425 to 480 deg C...
Abstract
A return bend (made from ASTM A213, grade T11, ferritic steel) from a triolefin-unit heater ruptured after two years in service. The unit operated at 2410 kPa, with a hydrocarbon feed stream (85% propylene) entering at 260 to 290 deg C and leaving at 425 to 480 deg C. The fracture was found to terminate at the welds that joined the bend to the pipeline. A high concentration of both small and large inclusions was exhibited by the metallographic examination of the steel near the fracture. Branched cracks similar to those produced by stress corrosion of steel were observed in a section through the fireside edge of the fracture surface. Scale was observed over most of the crack path which acted as a stress raiser. The effect of the oxide was magnified during thermal cycles because of differential thermal expansion, with the steel having a greater expansion coefficient than the scale. It was recommended that material that is intended for critical applications where failure cannot be tolerated should be non-destructively examined.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091362
EISBN: 978-1-62708-220-4
... of a longitudinal weld in 6.4 mm (0.25 in.) E-Brite ferritic stainless steel plate showing intergranular corrosion. The weld was made with matching filler metal. About 4× Fig. 2 Intergranular corrosion of a contaminated E-Brite ferritic stainless steel weld. Electrolytically etched with 10% oxalic acid...
Abstract
A nozzle in a wastewater vaporizer began leaking after approximately three years of service with acetic and formic acid wastewaters at 105 deg C (225 deg F) and 414 kPa (60 psig). The shell of the vessel was weld fabricated from 6.4 mm (0.25 in.) E-Brite stainless steel plate and measured 1.5 m (58 in.) in diameter and 8.5 m (28 ft) in length. Investigation (visual inspection, chemical analysis, radiography, dye-penetrant inspection, and hydrostatic testing of all E-Brite welds, 4x images, 100x/200x images electrolytically etched with 10% oxalic acid, and V-notch Charpy testing) supported the conclusion that failure of the nozzle weld was the result of intergranular corrosion caused by the pickup of interstitial elements and subsequent precipitation of chromium carbides and nitrides. Carbon pickup was believed to have been caused by inadequate joint cleaning prior to welding. The increase in the weld nitrogen level was a direct result of inadequate argon gas shielding of the molten weld puddle. Two areas of inadequate shielding were identified: improper gas flow rate for a 19 mm (0.75 in.) diam gas lens nozzle, and contamination of the manifold gas system. Recommendations included changes in the cleaning and welding process.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001816
EISBN: 978-1-62708-241-9
...Abstract Abstract This paper describes the superplastic characteristics of shipbuilding steel deformed at 800 °C and a strain rate less than 0.001/s. After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite...
Abstract
This paper describes the superplastic characteristics of shipbuilding steel deformed at 800 °C and a strain rate less than 0.001/s. After the superplastic deformation, the steel presents mixed fractures: by decohesion of the hard (pearlite and carbides) and ductile (ferrite) phases and by intergranular sliding of ferrite/ferrite and ferrite/pearlite, just as it occurs in stage III creep behavior. The behavior is confirmed through the Ashby-Verrall model, according to which the dislocation creep (power-law creep) and diffusion creep (linear-viscous creep) occur simultaneously.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089338
EISBN: 978-1-62708-224-2
.... The directionality of the features was found to be suggestive of shear overload. It was observed that fracture preferentially followed the nonmetallic inclusions. The fracture was revealed to be parallel to the direction of the manganese sulfide stringer inclusions. The presence of significant banding of the ferrite...
Abstract
A steel lifting eye, manufactured from grade 1144 steel, failed during service. The eye ring fractured in two places, adjacent to the threaded shank and diametrically opposite to this region. Woody overload features, typical for resulfurized steels were revealed by SEM. The directionality of the features was found to be suggestive of shear overload. It was observed that fracture preferentially followed the nonmetallic inclusions. The fracture was revealed to be parallel to the direction of the manganese sulfide stringer inclusions. The presence of significant banding of the ferrite and pearlite microstructure was revealed by etching. It was also observed that the fracture is primarily along the inclusions and through bands of ferrite. It was concluded that the lifting eye failed as a result of overload. Fracture occurred parallel to the rolling direction, through manganese-sulfide stringers and ferrite bands in the base metal matrix. The material used for this application was very anisotropic, exhibiting substantially poorer long and short transverse mechanical properties than longitudinal properties.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001200
EISBN: 978-1-62708-221-1
... flake size in a basic mass of pearlite with little ferrite. But the thin-walled part showed a structure of dendrites of precipitated primary solid solution grains with pearlitic-ferritic structure and a residual liquid phase with granular graphite in the ferritic matrix. The structure was formed...
Abstract
During the operation of tractors with cantilevered body, the lateral wall of the hypoeutectic cast iron cylinder blocks cracked repeatedly. Three of the blocks were examined. The grain structure of the thick-walled part consisted of uniformly distributed graphite of medium flake size in a basic mass of pearlite with little ferrite. But the thin-walled part showed a structure of dendrites of precipitated primary solid solution grains with pearlitic-ferritic structure and a residual liquid phase with granular graphite in the ferritic matrix. The structure was formed by undercooling of the residual melt. In this case, it was promoted by fast cooling of the thin wall and had comparatively low strength. The fracture formation in the cylinder blocks was ascribed primarily to casting stresses. They could be alleviated by better filleting of the transition cross sections. The fracture was promoted by the formation of undercooled microstructure of low strength in the thin-walled part. Similar damage appeared in a cylinder head, in which case, the cracks were promoted by a supercooled structure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001198
EISBN: 978-1-62708-221-1
... of the caps consisted of graphite in pearlitic-ferritic matrix. Casting stresses did not play a decisive role because of the simple shape of the pieces that were without substantial cross sectional variations. Two factors exerted an unfavorable effect in addition to comparatively low strength. First...
Abstract
Cast iron bearing caps in tractor engines fractured repeatedly after only short operating periods. The fracture originated in a cast-in groove and ran approximately radially to the shaft axis. The smallest cross section was at the point of fracture. The core structure of the caps consisted of graphite in pearlitic-ferritic matrix. Casting stresses did not play a decisive role because of the simple shape of the pieces that were without substantial cross sectional variations. Two factors exerted an unfavorable effect in addition to comparatively low strength. First, the operating stress was raised locally by the sharp-edged groove, and second, the fracture resistance of the cast iron was lowered at this critical point by the existence of a ferritic bright border. To avoid such damage in the future it was recommended to observe one or more of the following precautions: 1) Eliminate the grooves; 2) Remove the ferritic bright border; 3) Avoid undercooling in the mold and therefore the formation of granular graphite; 4) Inoculate with finely powdered ferrosilicon into the melt for the same purpose; and, 5) Anneal at lower temperature or eliminate subsequent treatment in consideration of the uncomplicated shape of the castings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048787
EISBN: 978-1-62708-235-8
... was revealed. Streaks of ferrite were observed by metallographic examination. It was concluded that cracking of the top of the fire-extinguisher case was the result of ferrite streaks formed due to metal overheating. The temperature of the metal was recommended to be controlled so that the spinning operation...
Abstract
Leakage from the top of a fire-extinguisher case, made of 1541 steel tubing and closed by spinning was observed during testing. Three small folds were observed on the surface by visual examination and one was sectioned. A very fine transverse fissure through the section was revealed. Streaks of ferrite were observed by metallographic examination. It was concluded that cracking of the top of the fire-extinguisher case was the result of ferrite streaks formed due to metal overheating. The temperature of the metal was recommended to be controlled so that the spinning operation is done at a lower temperature to avoid formation of ferrite streaks.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001307
EISBN: 978-1-62708-215-0
...-affected zones led to the failure. Brittleness Cracking (fracturing) Heat affected zone Mechanical properties Repair welding Weld metal Ferritic malleable iron Brittle fracture Joining-related failures Background Visual Examination of General Physical Features Discussion...
Abstract
The right front spring hanger on a dual rear axle of the tractor of a tractor-trailer combination failed, causing the vehicle to roll-over. The hanger was made from malleable cast iron that had been heat treated to produce a decarburized surface layer and a pearlitic transition layer. It had been repair welded after breaking into two pieces longitudinally in a prior incident, using cast iron as weld metal. The repair weld bead on both surfaces missed the fracture over 15 to 20% of their lengths. The incomplete repair weld and brittleness of the weld metal and heat-affected zones led to the failure.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001739
EISBN: 978-1-62708-215-0
... of a few partially decarburized pearlite colonies in a ferrite matrix. The microstructure remote from the bulged area consisted of pearlite in a ferrite matrix. EDS analysis of internal deposits on the tube detected a major amount of iron, plus trace amounts of other elements. The evidence indicated...
Abstract
The rear wall tube section of a boiler that had been in service for approximately 38 years was removed and examined. Visual examination of the tube revealed a small bulge with a through-wall crack. Metallography showed that the microstructure of the bulged area consisted of a few partially decarburized pearlite colonies in a ferrite matrix. The microstructure remote from the bulged area consisted of pearlite in a ferrite matrix. EDS analysis of internal deposits on the tube detected a major amount of iron, plus trace amounts of other elements. The evidence indicated that the bulge and crack in the tube resulted from hydrogen damage. Examination of the remaining water circuit boiler tubing using nondestructive techniques and elimination of any heavy deposit buildup was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0046911
EISBN: 978-1-62708-227-3
... corrosion along elongated ferrite bands, possibly because silicon was dissolved in the ferrite and thus made it more susceptible to attack by the molten zinc. Recommendations included rewelding the vat using the manual shielded metal arc process with at least four passes on each side. Hot dip...
Abstract
A steel galvanizing vat measuring 3 x 1.2 x 1.2 m (10 x 4 x 4 ft) and made of 19 mm thick carbon steel plate (ASTM A285, grade B)) at a shipbuilding and ship-repair facility failed after only three months of service. To verify suspected failure cause, two T joints were made in 12.5 mm thick ASTM A285, grade B, steel plate. One joint was welded using the semiautomatic submerged arc process with one pass on each side. A second joint was welded manually by the shielded metal arc process using E6010 welding rod and four passes on each side. The silicon content of the shielded metal arc weld was 0.54%, whereas that of the submerged arc weld was 0.86%. After being weighed, the specimens were submerged in molten zinc for 850 h. Analysis (visual inspection, chemical analysis, 100x 2% nital-etched micrographs) supported the conclusions that the vat failed due to molten-zinc corrosion along elongated ferrite bands, possibly because silicon was dissolved in the ferrite and thus made it more susceptible to attack by the molten zinc. Recommendations included rewelding the vat using the manual shielded metal arc process with at least four passes on each side.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001683
EISBN: 978-1-62708-234-1
... the cast two-phase structure of the weld filler itself. The result was a void wall which consisted of a rough and porous ferritic material, a consequence of preferential attack of the austenitic phase and slightly lower rate of corrosive attack of the ferrite phase. The three-dimensional spongy surface...
Abstract
Corrosion in a closed-loop cooling water system constructed of austenitic stainless steel occurred during an extended lay up of the system with biologically contaminated water. The characteristics of the failure were those of microbiologically influenced corrosion (MIC). The corrosion occurred at welds and consisted of large subsurface void formations with pinhole penetrations of the surfaces. Corrosive attack initiated in the heat affected zones of the welds, usually immediately adjacent to fusion lines. Stepwise grinding, polishing, and etching through the affected areas revealed that voids generally grew in the wrought material by uniform general corrosion. Tunneling or worm-holing was also observed, whereby void extension occurred by initiating daughter voids probably at flaws or other inhomogeneities. Selective attack occurred within the fusion zone, i.e., within the cast two-phase structure of the weld filler itself. The result was a void wall which consisted of a rough and porous ferritic material, a consequence of preferential attack of the austenitic phase and slightly lower rate of corrosive attack of the ferrite phase. The three-dimensional spongy surface was studied optically and with the scanning electron microscope.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048331
EISBN: 978-1-62708-229-7
...Abstract Abstract The top tube of a horizontal superheater bank in the reheat furnace of a steam generator ruptured after seven years in service. The rupture was found to have occurred in the ferritic steel tubing (2.25Cr-1Mo steel (ASME SA-213, grade T-22)) near the joint where it was welded...
Abstract
The top tube of a horizontal superheater bank in the reheat furnace of a steam generator ruptured after seven years in service. The rupture was found to have occurred in the ferritic steel tubing (2.25Cr-1Mo steel (ASME SA-213, grade T-22)) near the joint where it was welded to austenitic stainless steel tubing (type 321 stainless steel (ASME SA-213, grade TP321H)). The surface temperature of the tube was found to be higher than operating temperature in use earlier. The ferritic steel portion of the tube was found to be longitudinally split and heavily corroded in the region of the rupture. A red and white deposit was found on the sides and bottom of the tube in the rupture area. The deposit was produced by attack of the steel by the alkali acid sulfate and had thinned the tube wall. It was concluded that rupture of the tube had occurred due to thinning of the wall by coal-ash corrosion. The thinned tubes were reinforced by pad welding. Type 304 stainless steel shields were welded to the stainless steel portions of the top reheater tubes and were held in place about the chromium-molybdenum steel portions of the tubes by steel bands.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001197
EISBN: 978-1-62708-235-8
...Abstract Abstract The front wall of a cast iron crankcase cracked at the transition from the comparatively minor wall thickness to the thick bosses for the drilling of the bolt holes. Metallographic examination showed the case was aggravated by the fact that the casting had a ferritic basic...
Abstract
The front wall of a cast iron crankcase cracked at the transition from the comparatively minor wall thickness to the thick bosses for the drilling of the bolt holes. Metallographic examination showed the case was aggravated by the fact that the casting had a ferritic basic structure and the graphite in part showed a granular formation, so that strength of the material was low. In a second crankcase with the same crack formation the structure in the thick-wailed part was better. But it also showed granular graphite in the ferritic matrix in the thin-walled part between the dendrites of the primary solid solution precipitated in the residual melt. A third crankcase had fractures in two places, first at the frontal end wall and second at the thinnest point between two bore holes. In all three cases casting stresses caused by unfavorable construction and rapid cooling were responsible for the crack formation. A fourth crankcase had cracked in the bore-hole of the frontal face. In this case the cause of the fracture was the low strength of a region that was caused by a bad microstructure further weakened by the bore hole.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047991
EISBN: 978-1-62708-225-9
... raceway. The lower hardness values were attributed to improper flame hardening. It was confirmed by metallographic examination of a 3% nital etched sample that the inner ring (tempered martensite and ferrite) and the outer ring (ferrite, scattered patches of pearlite, and martensite) were not properly...
Abstract
Deformation, surface cracking, and spalling on the raceway of the outer ring (made of 4140 steel) of a large bearing caused it to be replaced from a radar antenna. The raceway surfaces were to be flame hardened to 55 HRC minimum and 50 HRC 3.2 mm below the surface, according to specifications. Samples from both the inner and outer rings were examined. A much lower hardness (25.2 to 18.9 HRC) was indicated during a vertical traverse 4.1 cm from the outer surface of the outer ring while slightly lower hardness values (46.8 to 54.8 HRC) were seen on the hardness traverse on the inner ring raceway. The lower hardness values were attributed to improper flame hardening. It was confirmed by metallographic examination of a 3% nital etched sample that the inner ring (tempered martensite and ferrite) and the outer ring (ferrite, scattered patches of pearlite, and martensite) were not properly austenitized. Displacement of metal on the outer raceway was revealed by elongation of grain structure. It was concluded that the failure of the raceway surface was due to incomplete austenitization caused by the improper heat treatment during flame hardening process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089459
EISBN: 978-1-62708-235-8
... and curvature of beach marks to be the rough ground surface. An incipient crack 9.5 mm along with several other cracks on one of the fractured rods was revealed by liquid penetration examination. Metallographic examination of the fractured rods indicated a banded structure consisting of zones of ferrite...
Abstract
The connecting end of two forged medium-carbon steel rods used in an application in which they were subjected to severe low-frequency loading failed in service. The fractures extended completely through the connecting end. The surface hardness of the rods was found to be lower than specifications. The fractures were revealed to be in areas of the transition regions that had been rough ground to remove flash along the parting line. The presence of beach marks, indicating fatigue failure, was revealed by examination. The fracture origin was confirmed by the location and curvature of beach marks to be the rough ground surface. An incipient crack 9.5 mm along with several other cracks on one of the fractured rods was revealed by liquid penetration examination. Metallographic examination of the fractured rods indicated a banded structure consisting of zones of ferrite and pearlite. It was established that the incipient cracks found in liquid-penetrant inspection had originated at the surface in the banded region, in areas of ferrite where this constituent had been visibly deformed by grinding. Closer control on the microstructure, hardness of the forgings and smooth finish in critical area was recommended.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001817
EISBN: 978-1-62708-241-9
.... The rope was made from multiple strands of 1095 steel wire. Its chemical composition, ferrite-pearlite structure, and high hardness indicate that the wire is a type of extra improved plow steel (EEIPS grade). The morphologies of the fracture surfaces suggest that the wires were subjected to tensile...
Abstract
A wire hoisting rope on a drilling rig failed during a lift, after a few cycles of operation, causing extensive damage to support structures. The failure investigation that followed included mechanical property testing and chemical, metallurgical, and finite element analysis. The rope was made from multiple strands of 1095 steel wire. Its chemical composition, ferrite-pearlite structure, and high hardness indicate that the wire is a type of extra improved plow steel (EEIPS grade). The morphologies of the fracture surfaces suggest that the wires were subjected to tensile overloading. This was confirmed by finite element analysis, which also revealed compressive contact stresses between the wires and between the rope and sheave surface. Based on the results, it was concluded that a tensile overload, due to the combined effect of a sudden load and undersized sheave, is what ultimately caused the rope to fail.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0045903
EISBN: 978-1-62708-223-5
..., and metallographic examination revealed a basic microstructure of pearlite and ferrite with bands of slightly finer pearlite, with a large concentration of inclusion stringers in the area of the fracture origin. Further investigation using an energy-dispersive x-ray analyzer showed high concentrations of sulfur...
Abstract
A 230 mm (9 in.) thick casing, fabricated from ASTM 235-55 low-carbon steel, of a 450 Mg (500 ton) extrusion press failed after 27 years of service. Initial visual examination revealed an area that exhibited multiple origins and classic beach marks radiating out approximately 75 mm (3 in.) from the origin along the wall of a hydraulic-oil bleed hole. Investigation with a SEM showed corrosion pits along the bleed hole wall, but oxidation and corrosion prevented review of microfractographic details. Vacuum epoxy encapsulation, sectioning of the bleed hole, and metallographic examination revealed a basic microstructure of pearlite and ferrite with bands of slightly finer pearlite, with a large concentration of inclusion stringers in the area of the fracture origin. Further investigation using an energy-dispersive x-ray analyzer showed high concentrations of sulfur and manganese. Thus, the failure appeared to have resulted from corrosion-assisted fatigue, and the inclusion concentration in the fracture-initiated area indicated that the chemical-composition limits for sulfur and manganese would have greatly exceeded material specifications. A higher quality steel was recommended for the replacement unit to lessen the possibility of such gross inclusion segregation and to improve the fracture toughness of the cylinder.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0089534
EISBN: 978-1-62708-223-5
... was disclosed by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about...
Abstract
The specially designed sand-cast low-alloy steel jaws that were implemented to stretch the wire used in prestressed concrete beams fractured. The fractures were found to be macroscale brittle and exhibited very little evidence of deformation. The surface of the jaws was disclosed by metallographic examination to be case carburized. The case was found to be martensite with small spheroidal carbides while the core consisted of martensite plus some ferrite. The fracture was revealed to be related to shrinkage porosity. Tempering was revealed to be probably limited to about 150 deg C by the hardness values (close to the maximum hardness values attainable) for the core. It was interpreted that the low tempering temperature used may have contributed to the brittleness. The procedures used for casting the jaws were recommended to be revised to eliminate the internal shrinkage porosity. Tempering at a slightly higher temperature to reduce surface and core hardness was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001154
EISBN: 978-1-62708-223-5
... during high impact fatigue stresses in the drop forge. The second piston rod of 120 mm diam consisted of a steel with 0.25% C and 1.00% Mn. It allegedly had 57 kp/sq mm tensile strength and 26% elongation. The basic structure of the 120 mm piston rod was ferritic-pearlitic and hardness of 155 Brinell...
Abstract
The cause of fracture of two piston rods of hammers of a drop forge was determined. The first rod of 180 mm diam consisted of an unalloyed steel with 0.37% C and 0.67% Mn and had a strength of 56 kp/sq mm at 26% elongation. Fatigue fractures propagated from several points which could be recognized as flaky cracks already in the fracture, and which later were united. No material defects could be detected in the cross section parallel to the fracture plane except for these very short cracks. These comparatively insignificant defects were sufficient to cause the fracture during high impact fatigue stresses in the drop forge. The second piston rod of 120 mm diam consisted of a steel with 0.25% C and 1.00% Mn. It allegedly had 57 kp/sq mm tensile strength and 26% elongation. The basic structure of the 120 mm piston rod was ferritic-pearlitic and hardness of 155 Brinell was accordingly low, corresponding to approximately 53 kp/sq mm tensile strength. The incipient fractures had no connection with the material defects in this shaft and therefore the fracture could not have been caused by them. Probably the low strength of the piston rod was insufficient for the high stresses.