Skip Nav Destination
Close Modal
Search Results for
fatigue test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 657 Search Results for
fatigue test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Low Cycle Thermal Fatigue and Fracture of Reinforced Piping
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Image
Published: 01 January 2002
Fig. 13 Phosphor bronze (C51000) spring that failed prematurely during fatigue testing. Failure was due to the presence of a tool mark (indentation) at a bend. (a) Setup for fatigue testing, and detail of the spring showing location of crack at bend 2. (b) A broken end of the spring, 40
More
Image
Published: 01 January 2002
Fig. 31 Fracture surfaces of a torsional fatigue-test specimen. Courtesy of Greg Fett, Dana Corporation
More
Image
in Fatigue Fracture of a Phosphor Bronze Spring Because of Tool Marks
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Phosphor bronze (C51000) spring that failed prematurely during fatigue testing. Failure was due to the presence of a tool mark (indentation) at a bend. (a) Setup for fatigue testing, and detail of the spring showing location of crack at bend 2. (b) A broken end of the spring, 40
More
Image
Published: 15 January 2021
Fig. 40 Fracture surfaces of a torsional fatigue test specimen. Courtesy of G. Fett, Dana Corporation
More
Image
in Analysis of Critical Stress for Subsurface Rolling Contact Fatigue Damage Assessment Under Roll/Slide Contact
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 6 Results of rolling contact fatigue test: ( a ) varies of friction coefficient with the test time,; and ( b ) FWHM along the radii of test samples)
More
Image
in Effect of Prior Processing on the Performance of PH 13-8 Mo Stainless Steel Helicopter Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Typical retaining rod subject to spectrum load fatigue testing, shown in the as-received condition. Failure of these rods occurred in the threads, indicated by the arrow. Reduced 75%
More
Image
Published: 01 January 2002
Fig. 16 Carbon steel counterbalance spring that failed during fatigue testing. (a) Macrograph showing fracture locations (arrows). 1 3 ×. (b) Fracture surface showing dark band (arrow) that nucleated fracture. 6×. (c) Etch pits in surface. 100×
More
Image
in Fatigue Fracture of a Carbon Steel Counterbalance Spring Caused by Hydrogen Damage
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 1 Carbon steel counterbalance spring that failed during fatigue testing. (a) Macrograph showing fracture locations (arrows). 1 3 ×. (b) Fracture surface showing dark band (arrow) that nucleated fracture. 6×. (c) Etch pits in surface. 100×
More
Image
Published: 01 December 1992
Fig. 1 Laboratory-fatigue-tested cross member sample 1, showing cracking progression from internal fillet-welded diaphragm through channel side wall at location indicated by arrow.
More
Image
Published: 01 December 1992
Fig. 4 Internal view of cracking on fatigue-tested sample 9. Cracking is evident at toes of both fillet welds, as indicated by arrows.
More
Image
Published: 01 December 1992
Fig. 6 Fracture surface at fillet weld toe of fatigue-tested sample 9. The area denoted by “S” was removed for SEM examination, and a metallographic section was taken at location “M”.
More
Image
Published: 01 December 1992
Image
Published: 01 December 1992
Fig. 8 SEM image of fracture origin area at weld toe on fatigue tested sample 1. Ratchet mark at lower center is indicative of fatigue cracks initiating on different planes. 13×.
More
Image
in Flow-Induced Vibration Fatigue of Stainless Steel Impeller Blades in a Circulating Water Pump
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 18 Results of rotating beam fatigue testing of impeller specimens (alternating stress versus cycles to failure).
More
Image
in Crack Propagation of Sirocco Fan
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Image
in Failure Analysis of a Spoon Broken by a Parapsychic Person
> ASM Failure Analysis Case Histories: Household Products and Consumer Goods
Published: 01 June 2019
Fig. 8 Transgranular fatigue region on the exemplar test specimen subjected to cyclic applied loads.
More
Image
Published: 01 January 2002
Fig. 25 Fatigue-fracture structures on wrought type ASTM F563 cobalt-alloy test specimens that fatigued in air. (a) Very fine fatigue striations are superimposed on crystallographically oriented fracture structures. 2480×. (b) Crystallographically oriented fracture morphology showing twin
More
Image
Published: 01 January 2002
Fig. 26 Fatigue cracks in laboratory test specimens of (a) a steering knuckle made of ferritic ductile iron showing macroscopic features of a fatigue crack initiated at a sharp corner, and (b) a rotating bending fatigue specimen made of as-cast gray iron. Fatigue in this relatively brittle
More
Image
Published: 15 January 2021
Fig. 26 Fatigue cracks in laboratory test specimens. (a) Steering knuckle made of ferritic ductile iron showing macroscopic features of a fatigue crack initiated at a sharp corner. (b) Rotating-bending fatigue specimen made of as-cast gray iron. Fatigue in this relatively brittle gray iron
More
1