Skip Nav Destination
Close Modal
Search Results for
fatigue resistance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 351 Search Results for
fatigue resistance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in The Effects of Sulfide Inclusions on Mechanical Properties and Failures of Steel Components
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 9 Fatigue resistance curves for AISI 4340H steel reproduced from [ Ref. 8 ]. The upper curve contained small inclusions, while the lower curve contained abnormally large inclusions
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047681
EISBN: 978-1-62708-229-7
... the resistance welds was generally present. The stator vane failed by a fatigue crack that initiated at internal surface discontinuities caused by metal expulsion from the resistance seam weld used in fabricating the vane. Expulsion of metal from seam welds should be eliminated by a slight reduction in welding...
Abstract
A fluorescent liquid-penetrant inspection of an experimental stator vane of a first-stage axial compressor revealed the presence of a longitudinal crack over 50 mm (2 in.) long at the edge of a resistance seam weld. The vane was made of titanium alloy Ti-6Al-4V (AMS 4911). The crack was opened by fracturing the vane. The crack surface displayed fatigue beach marks emanating from the seam-weld interface. Both the leading-edge and trailing-edge seam welds exhibited weld-metal expulsions up to 3.6 mm (0.14 in.) in length. Metallographic examination confirmed that metal expulsion from the resistance welds was generally present. The stator vane failed by a fatigue crack that initiated at internal surface discontinuities caused by metal expulsion from the resistance seam weld used in fabricating the vane. Expulsion of metal from seam welds should be eliminated by a slight reduction in welding current to reduce the temperature, by an increase in the electrode force, or both.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001742
EISBN: 978-1-62708-217-4
... various modifications, such as a thicker rod, fatigue resistant bolts, and more accurate preload measurements. The configuration of these rods were changed to a tongue-and-groove design to increase service life. Bolted joints Connecting rods Design Helicopters Specifications Torque Metal...
Abstract
In a helicopter engine connecting rod, high-cycle, low-stress fatigue fractures in bolts and arms progressed about 75% across the section before the final rupture. Factors involved were insufficient specified preload, inadequate tightening during assembly, and engine overspeed. The assigned main causes were design deficiency, improper maintenance during overhaul, and abnormal service operation. The problem can be solved by proper overhauling that ensures bolted assemblies are tightened evenly and accurately, in accordance with recommended torque values. Also, the manufacturer made various modifications, such as a thicker rod, fatigue resistant bolts, and more accurate preload measurements. The configuration of these rods were changed to a tongue-and-groove design to increase service life.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047113
EISBN: 978-1-62708-219-8
... in strength for the cyclic applied loads in this case and probably was not tightened sufficiently. Recommendations included removing the remaining bolts in the crane support assembly and replacing them with a higher-strength, more fatigue-resistant bolt, for example, SAE grade F, 104 to 108 HRB. The bolts...
Abstract
A portion of a 19 mm (0.75 in.) diam structural steel bolt was found on the floor of a manufacturing shop. This shop contained an overhead crane system that ran on rails supported by girders and columns. Inspection of the crane system revealed that the bolt had come from a joint in the supporting girders and could be considered one of the principal fasteners in the track system. Analysis (visual inspection, metallographic exam, and hardness testing) supported the conclusions that fatigue induced by the overhead movement of the crane produced failure of the bolt. The bolt was deficient in strength for the cyclic applied loads in this case and probably was not tightened sufficiently. Recommendations included removing the remaining bolts in the crane support assembly and replacing them with a higher-strength, more fatigue-resistant bolt, for example, SAE grade F, 104 to 108 HRB. The bolts should be tightened according to the specifications of the manufacturer, and the system should be periodically inspected for correct tightness.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001910
EISBN: 978-1-62708-217-4
... not in the nitrided condition as was required. This resulted in lower wear and fatigue resistance. These components also had a silicon content nearly double of that specified. The high silicon content lowered the notch tensile strength and toughness of the components. Breech bolts Weapons Military...
Abstract
Breech bolt assemblies from the Gatling guns used on fighter aircraft failed during firing tests. Metallography of the failed components revealed considerable decarburization which resulted in a loss of surface hardness. It was also determined that the maraging steel components were not in the nitrided condition as was required. This resulted in lower wear and fatigue resistance. These components also had a silicon content nearly double of that specified. The high silicon content lowered the notch tensile strength and toughness of the components.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0090994
EISBN: 978-1-62708-225-9
... strength range was 1689 to 1793 MPa (245 to 260 ksi). The finished springs were to be shot peened for greater fatigue resistance. Investigation (visual inspection, 3x images, 2% nital etched 148x SEM images, chemical analysis, hardness testing, and EDS analysis) supported the conclusion that the springs...
Abstract
Two large tension springs fractured during installation. The springs were manufactured from a grade 9254 chromium-silicon steel spring wire. The associated material specification allows wire in the cold-drawn or oil-tempered (quenched-and-tempered) condition. The specified wire tensile strength range was 1689 to 1793 MPa (245 to 260 ksi). The finished springs were to be shot peened for greater fatigue resistance. Investigation (visual inspection, 3x images, 2% nital etched 148x SEM images, chemical analysis, hardness testing, and EDS analysis) supported the conclusion that the springs failed during installation due to the presence of preexisting defects. Crack surfaces were found to be corroded and phosphate coated, indicating that the cracks occurred during manufacture. Installation, which presumably entailed some axial extension, resulted in ductile overload failure at the crack sites. Recommendations included evaluating the manufacturing steps to identify the process(es) wherein the cracking was likely occurring. It was further recommended that a suitable nondestructive method such as magnetic particle inspection be implemented.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006918
EISBN: 978-1-62708-395-9
... Peroxide Gas Plasma Sterilization on the Molecular Structure, Fatigue Resistance, and Wear Behavior of UHMWPE , J. Biomed. Mater. Res. , Vol 40 (No. 3 ), 1998 , p 378 – 384 10.1002/(SICI)1097-4636(19980605)40:3<378::AID-JBM6>3.0.CO;2-C 46. Goldman M. , Gronsky R...
Abstract
This article reviews generalized test methodologies for fatigue characterization of polymers and examines fatigue fracture mechanisms in different engineering plastics. It provides detailed micromechanistic images of crack-tip processes for a variety of semicrystalline and amorphous engineering polymers. The article describes fracture mechanics solutions and approaches to the fatigue characterization of engineering polymers when dealing with macroscale fatigue crack growth. It includes mechanistic images for high-density polyethylene, ultrahigh-molecular-weight polyethylene, nylon 6, 6, polycarbonate, and polypropylene. The article describes the micromechanisms of toughening of plastics and uses a macroscale approach of applying fracture mechanics to the fatigue life prediction of engineering polymers, building on the mechanistic concepts. It also describes the factors affecting fatigue performance of polymers.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
... was tempered martensite. Although both the selected material and the heat treatment are the same as those expected in drive shafts, it is worth noticing that from the fatigue resistance (endurance limit) perspective, the material capabilities might have not been fully achieved. Indeed, it is generally accepted...
Abstract
The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used in the design calculations, thus causing the initiation of the cracking. Moreover, although the shaft had been quenched and tempered, its actual hardness did not have the optimal value for long-term fatigue strength.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001607
EISBN: 978-1-62708-231-0
... was used. The inadequacy of the material was further confirmed by the high inclusion density. The failed wire rope contained a very high population of essentially Al-Ca-Ti silicates in the form of stringers. Such stringers are detrimental to the fatigue resistance of the steel. 2 Fractographic...
Abstract
Wire ropes, pulleys, counterweights, and connecting systems are used for auto tensioning of contact wires of electric railways. A wire rope in one such auto tensioning system suffered premature failure. Failure investigation revealed fatigue cracks initiating at nonmetallic inclusions near the surface of individual wire strands in the rope. The inclusions were identified as Al-Ca-Ti silicates in a large number of stringers, and some oxide and nitride inclusions were also found. The wire used in the rope did not conform to the composition specified for AISI 316 grade steel, nor did it satisfy the minimum tensile strength requirements. Failure of the wire rope was found to be due to fatigue; however, the ultimate fracture of the rope was the result of overload that occurred after fatigue failure had reduced the number of wire strands supporting the load.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001527
EISBN: 978-1-62708-224-2
.... It is generally accepted that many smaller wires provide better fatigue resistance, while fewer, larger wires provide better abrasion resistance. Independent wire rope cores (IWRC) provide better crushing resistance than fiber cores. Because of the complex geometry of the assembled wires, the ultimate tensile...
Abstract
Mechanical properties of wire ropes, their chemical composition, and the failure analysis process for them are described. The wires are manufactured from high-carbon, plain carbon steel, with high-strength ropes most often manufactured from AISI Grade 1074. During visual failure examination, the rope, strand, and wire diameters should all be measured. Examination should also address the presence or absence of lubricant, corrosion evidence, and gross mechanical damage. Failed wires can exhibit classic cup-and-cone ductile features, flat fatigue features, and various appearances in-between. However, wires are often mechanically damaged after failure. Most nondestructive evaluation (NDE) techniques are not applicable to wire rope failures. Electron microscope fractography of fracture surfaces is essential in failure analysis. Fatigue is the most important fracture mode in wire ropes. Metallographic features of wire ropes that failed because of ductile overload and fatigue are described.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001809
EISBN: 978-1-62708-180-1
... always lubricated. The soft metals are sometimes used in thicknesses up to 6 mm (0.24 in.), but to increase fatigue resistance, the soft metals are coated or plated on a steel (or other stronger metal) backing in layers as thin as 25 μm. The major groups of soft metal bearing materials...
Abstract
This article discusses the classification of sliding bearings and describes the major groups of soft metal bearing materials: babbitts, copper-lead bearing alloys, bronze, and aluminum alloys. It provides a discussion on the methods for fluid-film lubrication in bearings. The article presents the variables of interest for a rotating shaft and the load-carrying capacity and surface roughness of bearings. Grooves and depressions are often provided in bearing surfaces to supply or feed lubricant to the load-carrying regions. The article explains the effect of contaminants in bearings and presents the steps for failure analysis of sliding bearings. It also reviews the factors responsible for bearing failure with examples.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... biocompatibility, these implants must possess high strengths and exhibit exceptional resistance to fatigue. 3 It has been estimated that fixation implants may be subjected to repeated stressing in excess of 10 6 cycles per year. 4 Chemically, the resistance to all forms of localized and general corrosion...
Abstract
Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all four of the implants. In every instance, the fatigue cracks initiated from the attachment screw holes at the reduced cross sections of the implants. Two fixation implant designs were analyzed using finite-element modeling. This analysis confirmed the presence of severe stress concentrations adjacent to the attachment screw holes, the fatigue crack initiation sites. Conclusions were reached regarding the design of these types of implant fixation devices, particularly the location of the attachment screw holes. The use of austenitic stainless steel for these biomedical implant devices is also addressed. Recommendations to improve the fixation implant design are suggested, and the potential benefits of the substitution of titanium or a titanium alloy for the stainless steel are discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001583
EISBN: 978-1-62708-217-4
... have a shallow surface layer in residual compression when finished with a fine cut. 5 This layer is beneficial to fatigue resistance. It is possible that the thick, uniform cold worked layer noted on the “A” material provided a surface compressive layer that may have been more resistant to fatigue...
Abstract
The purpose of this investigation was to determine the root cause of the differences noted in the fatigue test data of main rotor spindle assembly retaining rods fabricated from three different vendors, as part of a Second Source evaluation process. ARL performed dimensional verification, accessed overall workmanship, and measured the respective surface roughness of the rods in an effort to identify any discrepancies. Next, mechanical testing was performed, followed by optical and electron microscopy, and chemical analysis. Finally, ARL performed laboratory heat treatments at the required aging temperature and follow-up mechanical testing.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... in the image Fig. 9 Fatigue resistance curves for AISI 4340H steel reproduced from [ Ref. 8 ]. The upper curve contained small inclusions, while the lower curve contained abnormally large inclusions Fig. 1 Optical image of a typical woody fracture appearance of a resulfurized material...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006814
EISBN: 978-1-62708-329-4
...) The failure initiated as fatigue at the weld toe. Broek focused on the importance of fracture mechanics, a method of analysis that compares the resistance side (i.e., KIC ) to the demand side (stress and flaw size) of the equation. He argues for a holistic approach, meaning that the resistance side...
Abstract
Welded connections are a common location for failures for many reasons, as explained in this article. This article looks at such failures from a holistic perspective. It discusses the interaction of manufacturing-related cracking and service failures and primarily deals with failures that occur in service due to stresses caused by externally applied loads. The purpose of this article is to enable a failure analyst to identify the causative factors that lead to welded connection failure and to identify the corrective actions needed to overcome such failures in the future. Additionally, the reader will learn from the mistakes of others and use principles that will avoid the occurrence of similar failures in the future. The topics covered include failure analysis fundamentals, welded connections failure analysis, welded connections and discontinuities, and fatigue. In addition, several case studies that demonstrate how a holistic approach to failure analysis is necessary are presented.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006806
EISBN: 978-1-62708-329-4
... supplanted by replaceable insert bearings made from multilayer laminated metals. To increase the fatigue resistance of the bearing material, often the soft metals are coated or plated on a steel (or other stronger metal) backing in layers as thin as 25 μm. With such an arrangement, fatigue failure can...
Abstract
A mechanical part, which supports the moving part, is termed a mechanical bearing and can be classified into rolling (ball or roller) bearings and sliding bearings. This article discusses the failures of sliding bearings. It first describes the geometry of sliding bearings, next provides an overview of bearing materials, and then presents the various lubrication mechanisms: hydrostatic, hydrodynamic, boundary lubrication, elastohydrodynamic, and squeeze-film lubrication. The article describes the effect of debris and contaminant particles in bearings. The steps involved in failure analysis of sliding bearings are also covered. Finally, the article discusses wear-damage mechanisms from the standpoint of bearing design.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001533
EISBN: 978-1-62708-225-9
... of sliding bearing bush failure in the process of operation have set the urgent tasks of finding the causes of failure and of increasing wear resistance and resistance to fatigue failure of a sliding bearing babbit bush. For this reason, the investigation described in this article was completed to determine...
Abstract
An investigation of wear and failure of babbitt bushes was completed in this study. The results showed that wear at dry sliding of babbitt obtained by plasma spraying was less than that of babbitt in the as-cast state and after a deformation heat treatment. The failure of babbitt bushes was caused by a simultaneous and interrelated exhibition of fatigue and wear processes that depend considerably on cohesion strength between the bush and the bearing base and accumulation of defects on the contact surface between the bush and the shaft.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001907
EISBN: 978-1-62708-217-4
... investigation were compromised as a result of the parts being machined rather than forged. The same advantages apply to threads that are rolled rather than cut. Carburization raises the surface hardness of the part and is usually beneficial with respect to surface wear and fatigue resistance. However...
Abstract
Aircraft missile launcher attachment bolts fabricated from cadmium-coated Hy-tuf steel were found broken. Subsequent analysis of the broken bolts indicated three causes of failure. First, the bolts had been carburized, which was not in conformance with the heat treating requirements. Second, macroetching showed that the bolts has been machined from stock rather than forged, and the threads cut rather than rolled. It was also determined that hydrogen-assisted stress-corrosion cracking also played a part in the failure of the high-strength bolts.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001299
EISBN: 978-1-62708-215-0
... in the critically loaded pin radius zone, which became the initiation site for a hidden fatigue crack. The uncleanliness of the material further reduced its fatigue resistance. Fractographic studies established the mode of bending and torsional stresses. Its origin was traced to a subsurface hard refractory (Al...
Abstract
A 4340 steel piston engine crankshaft in a transport aircraft failed catastrophically during flight. The fracture occurred in the pin radius zone. Fractographic studies established the mode of failure as fatigue under a complex combination of bending and torsional stresses. SEM examination revealed that the fracture origin was a subsurface defect-a hard refractory (Al2O3) inclusion—in the zone close to the pin radius. Chemical analysis showed the crankshaft material to be of inferior quality. It was recommended that magnetic particle inspection using the dc method be used to cheek for cracks during periodic maintenance overhauls.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001568
EISBN: 978-1-62708-230-3
... material for the rolls. This duplex stainless steel had exhibited 1 superior corrosion-fatigue resistance and low residual stress in laboratory tests. Limited service experience thus far seems to confirm these findings. Reference Reference 1. Dahl C.B. and Ranger C.W. , “Stainless...
Abstract
Two suction rolls at the first press section of a 25 ft. wide paper machine developed cracks within two years of service. The rolls were austenitic stainless steel castings made of ASTM A 351 Grade CF8M alloy containing molybdenum. The rolls were exposed to slightly acidic white water (pH approximately 4.7) containing chlorides (45 ppm). Visual and liquid penetrant inspections of the rolls revealed extensive cracking at the roll inside surface. The cracks penetrated more than 30 percent of the wall thickness and a few cracks were several inches long. The cracks were preferentially oriented along the roll length and primarily at the roll inside surface. Field metallographic examination showed significant grain boundary chromium-carbide precipitation and intergranular corrosion. The roll failures were attributed to chromium depletion along the grain boundaries (sensitization) resulting from slow cooling of the casting to avoid large residual stresses. The roll manufacturer recommended a proprietary ferritic/austenitic stainless steel as the replacement material for the rolls.
1