1-20 of 398 Search Results for

fatigue life

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... Abstract This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006819
EISBN: 978-1-62708-329-4
... reviews fatigue assessment methods incorporated in international design and post construction codes and standards, with special emphasis on evaluating welds. Specifically, the stress-life approach, the strain-life approach, and the fracture mechanics (crack growth) approach are described. An overview...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001788
EISBN: 978-1-62708-241-9
... Abstract Several failed dies were analyzed and the results were used to evaluate fatigue damage models that have been developed to predict die life and aid in design and process optimization. The dies used in the investigation were made of H13 steels and fractured during the hot extrusion of Al...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented. coupling interactions fatigue life prediction thermomechanical fatigue THERMOMECHANICAL FATIGUE (TMF) is the general...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... Abstract Thermomechanical fatigue (TMF) refers to the process of fatigue damage under simultaneous changes in temperature and mechanical strain. This article reviews the process of TMF with a practical example of life assessment. It describes TMF damages caused due to two possible types...
Image
Published: 01 January 2002
Fig. 19 Effect of in-phase (IP) and out-of-phase (OP) cycling on the fatigue life of IN-738. (a) Strain life data for the various wave forms. (b) Cycles to crack initiation based on the maximum tensile stresses More
Image
Published: 01 January 2002
Fig. 23 Correlation between striation spacing and fatigue life of permanent mold cast modified A356 aluminum alloy specimens tested at 0.5% strain amplitude More
Image
Published: 15 January 2021
Fig. 10 Influence of pitch-line velocity on the fatigue life of a hardened steel. Adapted from Ref 23 More
Image
Published: 30 August 2021
Fig. 32 Dressing of fillet weld toes to improve fatigue life. Adapted from ASME Section VIII, Division 2 ( Ref 15 ) More
Image
Published: 01 December 1993
Fig. 9 Effect of flaw size on integrated fatigue life More
Image
Published: 01 December 2019
Fig. 20 Fatigue life distribution in the mould; case A boundary conditions (numbers on the contour bar show number of cycles to failure) More
Image
Published: 01 December 2019
Fig. 21 Fatigue life distribution in the mould; case B boundary conditions (numbers on the contour bar show number of cycles to failure) More
Image
Published: 01 December 2019
Fig. 6 Circumferential groove on rod that act as notches and shorten fatigue life More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001596
EISBN: 978-1-62708-225-9
... the fatigue life. Based on an understanding of the compressor motion, a Monte Carlo model was developed based on a linear damage theory to predict the fatigue life of the springs during start/stop conditions. The results of this model were compared to actual test data. The model showed that the design...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001904
EISBN: 978-1-62708-217-4
... Abstract A steel eyebolt which attached a rear lift strut to the right wing of a helicopter failed by fatigue. As a contributing factor, thread cutting produced sharp notches at thread roots, reducing fatigue life. Also, design fatigue life may have been exceeded as the part was in use about...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0051870
EISBN: 978-1-62708-228-0
... Abstract Coiled tubing with 80 ksi yield strength manufactured to a maximum hardness of 22 HRC to meet NACE Standard MR0175 requirement for sour gas service failed after being on 38 jobs (70% of its estimated fatigue life). A transverse crack where a leak occurred was identified as the primary...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment. elevated-temperature life assessment fabrication failure analysis fatigue life assessment fitness-for-service life assessment material defects nondestructive inspection stress...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture...
Image
Published: 30 August 2021
Fig. 23 Derivation of the strain-life fatigue curve adjusted for mean stress effects. Adapted from Ref 4 More
Image
Published: 15 May 2022
Fig. 10 Schematic of specimens used for total-life fatigue analysis. Tests can be done (a) in torsion, (b) with a rotating cantilever, (c) with a rotating beam, (d) with cantilever reverse bending, or (e) under axial loading. More