Skip Nav Destination
Close Modal
By
Harold Roper
By
Lester E. Alban
Search Results for
fatigue failure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1304
Search Results for fatigue failure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Fatigue and Corrosion Fatigue Failure Surfaces of Concrete Reinforcement
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001656
EISBN: 978-1-62708-219-8
... and depassivation by chloride ions. The first portion of this paper presents information, using metallographic techniques, on the depassivation of reinforcing steel in the presence of Cl − ions. Although there are no reports of failures in primary elements of structural concrete members due to fatigue...
Abstract
Some corrosion processes in the presence of chlorides, for steel embedded in concrete, are described and illustrated with the aid of scanning electron microscope EDXA data. Observations made of failure surfaces of reinforcements removed from the concrete beams after being subjected to sinusoidal load fluctuations at 6.7 Hz in air, 3% NaCl solution, and natural sea water are described. Reinforcement types studied included: hot-rolled mild steel bar, hot-rolled alloyed high strength bar, cold-worked high strength bar, galvanized bar of all these three types, nickel-clad bar and epoxy-coated bar.
Book Chapter
Fatigue Failure of a Compressor Crankshaft Due to the Application of Weld Metal
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001427
EISBN: 978-1-62708-236-5
... flexing that the apparent between it and the crankcase. These factors would increase the magnitude of the fluctuating stresses to which the shaft was subjected and be conducive to fatigue failure. There were three other compressors of the same make and type at the particular location...
Abstract
The crankshaft of a compressor fractured through the web remote from the driving end after about three years of service. The fracture ran diagonally across the web into the crankpin. It passed through the centers of two screwed plugs inserted into the web from opposite faces approximately in line with the crankpin center line. The fracture was of the fatigue type, slowly developing cracks having started from opposite sides of each tapped hole and crept across the section. Microstructure of the crankshaft indicated the material was a plain carbon steel, the carbon content being of the order of 0.3%. The failure resulted principally from the stress-raising effects of the screw holes combined with the cracks in the welds. If the screw holes had been left unfilled or if some form of mechanical locking had been used if plugged, failure would have been postponed if not averted.
Book Chapter
Fatigue Failure of a Chromium-Plated Crankshaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001722
EISBN: 978-1-62708-236-5
... Stress concentration Heat-treated steels Fatigue fracture On page 165 of Volume II of this series of Reports a case was reported of the failure by fatigue cracking of two chromium-plated Diesel-engine crankshafts. Another case of failure from a similar cause has since been investigated. The part...
Abstract
The crankshaft of a 37.5-hp, 3-cylinder oil engine was examined. The engine had been dismantled for the purpose of a general overhaul and in the course of this work the crankpins were chromium-plated before regrinding. The engine was returned to service and after running for 290 h the crankshaft broke at the junction of the No. 3 crankpin and the crankweb nearest to the flywheel. A typical fatigue crack had originated at a number of points in the root of the fillet to the web. In its early stages it ran slightly into the web but turned back to the pin when it encountered the oil hole. The shaft had been made from a heat-treated alloy steel. The thickness of the plating was approximately 0.025 in. and numerous cracks were visible in it, several of which had given rise to cracks in the steel below. The primary cause of the crankshaft failure was the plating of the crankpins. The presence of the grooves alone would result in considerable intensification of stress in zones which are normally highly stressed, while the crazy cracking introduced a multiplicity of stress-raisers of a type almost ideal from the point of view of initiating fatigue cracks.
Book Chapter
Fatigue Failure of a Metal-Sprayed Crankshaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001415
EISBN: 978-1-62708-236-5
.... , Trans. Inst. Mar. Eng. , v.LX. No. 12 , 1948 . Selected References Selected References • Wulpi D.J. , Failures of Shafts , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 1986 , p 459 – 482 10.31399/asm.hb.v11.a0001808 • Fatigue Failures...
Abstract
In the course of a general overhaul, the crankpins and main journals (3 in. diam) of the crankshaft of a four-cylinder oil engine were built up by metal spraying. Four weeks later, the shaft broke through the pin remote from the flywheel (driving) end. The fracture was of the fatigue type. A creeping crack originated in the fillet at the inside surface of the pin and extended parallel to the plane of the web across practically the entire section before complete rupture occurred. The sprayed metal on the fractured pin had very poor adhesion. The surfaces of the main journals had not been grooved but appeared to have been roughened by shot or grit-blasting prior to spraying and the deposit was more firmly adherent to these surfaces than in the case of the pins. It is doubtful, however, whether the adhesion of sprayed metal to a surface prepared even in this manner would always be satisfactory under severe loading conditions, such as those to which a crankpin is subjected in service.
Book Chapter
Fatigue Failure Caused by Weld Spatter
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048154
EISBN: 978-1-62708-235-8
.... Helical springs Medium-carbon steel Joining-related failures Fatigue fracture A medium-carbon helical spring was installed in a machine assembly that was welded into its final location. During welding, which was conducted several inches from the spring, no shield was used to prevent spatter from...
Abstract
A medium-carbon helical spring was installed in a machine assembly that was welded into its final location. Weld spatter was not prevented from landing on the wire surface by any shield. An elongated drop and two tiny droplets of metal were observed a short distance from the fracture. No droplets were revealed at the origin of the fracture, but it was assumed that a drop of molten metal landed at the origin. Adherence of the spatter drop was expected to have been affected by the opening and closing of the fatigue crack. Weld spatter bead was concluded to have caused the fatigue fracture.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089651
EISBN: 978-1-62708-235-8
... etched 300x magnification) supported the conclusion that the rocker levers failed in fatigue, with casting defects, or spiking, acting as stress raisers to initiate failures in highly loaded engine tests. Recommendations included shot peening of the levers as an interim measure to reduce the possibility...
Abstract
Several diesel-engine rocker levers (malleable iron similar to ASTM A 602, grade M7002) failed at low hours in overspeed, over-fuel, highly loaded developmental engine tests. Identical rocker levers had performed acceptably in normal engine tests. The rocker levers were failing through the radius of an adjusting screw arm. The typical fracture face exhibited two distinct modes of crack propagation: the upper portion indicated overload at final fracture, whereas the majority of the fracture suggested a fatigue fracture. Investigation (visual inspection, 1.5x/30x/60x magnification, and nital etched 300x magnification) supported the conclusion that the rocker levers failed in fatigue, with casting defects, or spiking, acting as stress raisers to initiate failures in highly loaded engine tests. Recommendations included shot peening of the levers as an interim measure to reduce the possibility of failure and redesign to increase the cross-sectional area of the levers.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089738
EISBN: 978-1-62708-235-8
...), and the ASM Committee on Failure Analysis of Weldments (for Failure Analysis and Prevention , Volume 10 of Metals Handbook (8th ed.), 1975). Selected Reference Selected Reference • Fatigue Failures , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 700...
Abstract
While undergoing vibration testing, a type 347 stainless steel inlet header for a fuel-to-air heat exchanger cracked in the header tube adjacent to the weld bead between the tube and header duct. Investigation (visual inspection and liquid penetrant inspection) supported the conclusion that the crack in the header tube was the result of a stress concentration at the toe of the weld joining a doubler collar to the tube. The stress concentration was caused by undercutting from poor welding technique and an unfavorable joint design that did not permit a good fit-up. Recommendations included manufacturing the doubler collar so that it could be placed in intimate contact with the header duct, and a revised weld procedure was recommended to result in a smaller, controlled, homogeneous weld joint with less distortion.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0047615
EISBN: 978-1-62708-230-3
... in the area of the fin tip. Cracking at the end of the fin-to-tube fillet weld was noted. The results indicate the failures were due to corrosion fatigue whose stresses were primarily thermally induced. A temporary solution included inspecting all tubes with shear-wave ultrasonics. Tubes with the most severe...
Abstract
After ten years of satisfactory operation, economizer-tube failures occurred in a large black liquor recovery boiler for a paper mill. The economizer contained 1320 finned tubes. Two fins ran longitudinally for most of the tube length and were attached by fillet welding on one side. The economizer tube leaks occurred at the end of the fin near the bottom of the economizer. A sample from a tube that had not failed showed heavy pitting attack on the inside of the tube, probably due to excess oxygen in the feedwater. Penetrant testing revealed numerous longitudinal cracks on the inside in the area of the fin tip. Cracking at the end of the fin-to-tube fillet weld was noted. The results indicate the failures were due to corrosion fatigue whose stresses were primarily thermally induced. A temporary solution included inspecting all tubes with shear-wave ultrasonics. Tubes with the most severe cracking were ground and repair welded. The square corners of the fins were trimmed back with a gradual taper so that expansion strains would be more gradually transferred to the tube surface. Water chemistry was closely evaluated and monitored, especially with regard to oxygen content.
Book Chapter
Fatigue Failure of a Locomotive Suspension Spring that Initiated at a Seam
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0048114
EISBN: 978-1-62708-231-0
... of resultant tensile stress from torsional stressing of the spring material. It was concluded that the fatigue failure in the spring was initiated at the base of a seam. Tensile stress Torsion 5160 UNS G51600 Fatigue fracture Hot-rolled hardened-and-tempered 5160 bars for suspension springs...
Abstract
A locomotive suspension spring with a bar diameter of 36 mm failed. Outdoor exposure of a hot-rolled hardened-and tempered 5160 bars for suspension springs resulted in rusting in the seam and on the fracture surface. A step due to a seam was visible on the surface. The thumb nail looked off-center from the step, but a smaller thumb-nail shape that is concentric with the step and a second stage of growth were found to be spread principally to the right of the step. The rapid stage of failure, which began at the edge of the thumb nail, was much rougher and exhibited rays that diverge approximately radially from it. The seam wall was revealed to have two zones among which the lower zone being mottled. Dozens of spearhead shaped areas (fatigue cracks) pointing away from the seam was revealed at the base of the seam. The orientation of these origins was normal to the direction of resultant tensile stress from torsional stressing of the spring material. It was concluded that the fatigue failure in the spring was initiated at the base of a seam.
Book Chapter
Fatigue Failure of a Diesel Engine Crankshaft
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001418
EISBN: 978-1-62708-231-0
... the bearing material. The defect was stoned smooth, a new bearing fitted, and the engine returned to service. The engine performed satisfactorily for a further twelve months until fracture of the crankshaft through the No. 5 crank pin supervened. The fracture revealed a complex torsional fatigue failure...
Abstract
The crankshaft of a six cylinder, 225-hp diesel engine driving a small locomotive was examined. About nine months after installation a fall in oil pressure was traced to damage to No. 5 crank pin bearing. A small lip present on one side of the discontinuity apparently served to scrape the bearing material. The defect was stoned smooth, a new bearing fitted, and the engine returned to service. The engine performed satisfactorily for a further twelve months until fracture of the crankshaft through the No. 5 crank pin supervened. The fracture revealed a complex torsional fatigue failure. Microscopic examination revealed that the pin had been hard chromium plated and that the plating followed the curved edge of the outer extremity of the defect. This crank pin contained an inherent defect in the form of a slag inclusion or crack situated at the surface. That the crack only showed itself after a period of service suggests that initially it may have been slightly below the surface of the machined pin and some slight extension outwards took place in service.
Book Chapter
Tooth Bending Fatigue Failure of a Spiral Bevel Gear
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001496
EISBN: 978-1-62708-231-0
... bending fatigue of the gear from the reverse direction near the toe end. The cause of failure was a crossed-over tooth bearing condition that placed loads at the heel end when going forward and at the toe end when going in reverse. The condition was too consistent to be a deflection under load; therefore...
Abstract
A failed spiral gear and pinion set made from 4320H Ni-Cr-Mo alloy steel operating in a high-speed electric traction motor gear unit driving a rapid transit train were submitted for analysis. The pinion was intact, but the gear had broken into two sections that resulted when two fractured areas went through the body of the gear. Wheel mileage of the assembly was 34,000 miles at the time of failure. All physical and metallurgical characteristics were well within specified standards, and both parts should have withstood normal loading conditions. The primary mode of failure was tooth bending fatigue of the gear from the reverse direction near the toe end. The cause of failure was a crossed-over tooth bearing condition that placed loads at the heel end when going forward and at the toe end when going in reverse. The condition was too consistent to be a deflection under load; therefore, it most likely was permanent misalignment within the assembly.
Book Chapter
Corrosion-Fatigue Failure of U-Bend Heat-Exchanger Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048728
EISBN: 978-1-62708-228-0
... wishes to acknowledge G.M. Buchheim, Exxon Research & Engineering Company, for his assistance in preparing several of the examples in the source article. Selected Reference Selected Reference • Fatigue Failures , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International...
Abstract
After being in service for ten years, two admiralty brass heat-exchanger tubes from a cooler in a refinery catalytic reforming unit cracked circumferentially in the area of U-bends. A blunt transgranular cracking with minimal branching propagating from the inside surface of the tube was revealed by metallography which was typical of cracking by corrosion fatigue mechanism. Corrosion deposits on both the inside- and outside-diam surfaces were found in the tubes. The presence of copper, zinc, iron, and small amounts of chloride, sulfur, silicon, tin, and manganese was revealed by energy-dispersive analysis of the deposits. It was interpreted by the hardness values (higher than typical for annealed copper tubing) that the tubes may not have been annealed after the U-bends were formed and thus the role of residual stresses in the crack was revealed. It was concluded that the tubes failed by corrosion fatigue initiated by pitting at the inside-diam surface. The tubes were recommended to be annealed after bending to reduce residual stresses from the bending operation to an acceptable level.
Book Chapter
Fatigue Failure Due to Improper Design
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047414
EISBN: 978-1-62708-233-4
...). This fatigue failure was the result of poor design, which incorporated a notch that acted as a stress raiser, leading to fatigue-crack growth. A generous radius was recommended to avoid similar failures. Radii Stress concentration Steel casting Fatigue fracture Figure 1 shows a fracture...
Abstract
There was a fracture of an anchor link that rides on a post with a spherical surface. No bevel or radius was called for, leaving an extremely sharp edge. A fatigue crack grew from the top sharp edge. The casting had good toughness and strength (1448 MPa, or 210 ksi, tensile strength). This fatigue failure was the result of poor design, which incorporated a notch that acted as a stress raiser, leading to fatigue-crack growth. A generous radius was recommended to avoid similar failures.
Book Chapter
Low-Cycle Thermal Fatigue Failure of a Type 304 Stainless Steel Tee Fitting
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048361
EISBN: 978-1-62708-234-1
.... The transgranular cracks suggested that thermal fatigue was a more likely cause of failure than SCC. It was concluded by temperature measurements that circumferential temperature gradients, in combination with inadequate flexibility in the piping system as a whole, had caused the failures. The tee fitting...
Abstract
Several failures occurred in 64-mm schedule 80 type 304 stainless steel (ASME SA-312, grade TP304) piping in a steam-plant heat-exchanger system near tee fittings at which cool water returning from the heat exchanger was combined with hot water from a bypass. Various portions of the piping were subjected to temperatures ranging from 29 to 288 deg C. Each of the failures were revealed to consist of transgranular cracking in and/or close to the circumferential butt weld joining the tee fitting to the downstream pipe leg, where the hot bypass water mixed with the cool return water. The transgranular cracks suggested that thermal fatigue was a more likely cause of failure than SCC. It was concluded by temperature measurements that circumferential temperature gradients, in combination with inadequate flexibility in the piping system as a whole, had caused the failures. The tee fitting was redesigned to alleviate the thermal stress pattern.
Book Chapter
Fatigue Failure of End Link from Grab Chain
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001463
EISBN: 978-1-62708-224-2
... failure was due to fatigue. Macro-etched cross sections showed a lack of penetration and fusion in the weld. Fatigue cracks developed and slowly progressed through the weld metal. Fracture occurred when the remaining area of sound metal was insufficient to support the load. Lack of penetration...
Abstract
The link which failed was a special long one connecting a grab chain to a swivel. It was made from En 14A steel and in continuous use for two years. On one of the fracture faces the chisel edge weld preparation was clearly visible and the crack progression markings present indicated failure was due to fatigue. Macro-etched cross sections showed a lack of penetration and fusion in the weld. Fatigue cracks developed and slowly progressed through the weld metal. Fracture occurred when the remaining area of sound metal was insufficient to support the load. Lack of penetration of this magnitude could be revealed by radiography or ultrasonics but it would be difficult to detect the presence of cracks in course of development from the defects. It would be more prudent to ensure that welded links of this type were free from internal cavities before being put into service.
Book Chapter
Bending-Fatigue Failure of a Steel Wire Hoisting Rope for a Stacker Crane
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048020
EISBN: 978-1-62708-224-2
.... Conclusions Failure of the wire rope occurred by bending fatigue. Continually running the same section of the rope over a sheave too small in diameter resulted in excessive bending stresses. Corrective Measures The sheave diameter could not be increased; therefore, the flexibility of a 6 × 37 rope...
Abstract
A 13 mm diam 18 x 7 fiber-core improved plow steel nonrotating wire rope, brought into service as a replacement for 6 x 37 improved plow steel ropes, failed after 14 months of service on a stacker crane. The change was reported to have been caused by difficulties twisting of the 6 x 37 rope. The hoist arrangement for this crane was found to consist of one rope with each end attached to a separate drum and the rope was wound around two 30-cm diam sheaves in the block and back up around an equalizer sheave. The rope section that had been in contact with the sheaves was deduced by measurement checks. The presence of broken wire ends, which indicated that the rope failed by fatigue, was revealed by reverse bending of the section of the rope which was normally subjected to this flexing. It was found that minimum sheave diam for a 13-mm 18 x 7 wire rope was 43 cm and hence the currently used smaller sheaves caused excessive bending stresses in the rope. The 18 x 7 rope was replaced by two 6 x 37 side-by-side counter-stranded steel-core ropes as a corrective measure.
Book Chapter
Fatigue Failure of a Steel Wire Rope Resulting From Shock Loading
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048026
EISBN: 978-1-62708-224-2
... that the sudden shock received by the hook in rolling the coils over the edge of the rinse tank after pickling caused vibration which was most severe at the clamped end of the rope. It was concluded that this caused the fatigue failure of the rope. As a corrective measure, the diam of the sheave was increased...
Abstract
The 11 mm diam 8 x 19 fiber-core rope, constructed from improved plow steel wire, on the cleaning-line crane failed while lifting a normal load of coils after five weeks of service. Several broken wires and fraying of the fiber core were revealed by visual examination of a section of the wire rope adjacent to the fracture. Fatigue cracks originating from both sides of the wire were revealed by microscopic examination of a longitudinal section of a wire. The diam of the sheave on the bale (27 cm) was found to be slightly below that specified for the 11 mm diam rope. It was observed that the sudden shock received by the hook in rolling the coils over the edge of the rinse tank after pickling caused vibration which was most severe at the clamped end of the rope. It was concluded that this caused the fatigue failure of the rope. As a corrective measure, the diam of the sheave was increased to 33 cm and pitched roll plates were installed between the tanks where rolling of coils was required.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048261
EISBN: 978-1-62708-225-9
...-angle intersections of the mounting holes and tooth-root fillets was revealed by metallographic examination. Design of the gear and placement of the mounting holes, which resulted in through hardening, were concluded to be the contributing factors to the fatigue failure of the gear. Design Gear...
Abstract
The gear of a spiral bevel gear set broke into three pieces after about two years of service. The gear (made of 4817 steel) broke along the root of a tooth intersected by three of the six 22-mm diam holes used to mount the gear to a hub. Fatigue progression for about 6.4 mm at the acute-angle intersections of three mounting holes with the root fillets of three teeth was revealed by examination of gear. Cracks at the intersections of the remaining three mounting holes and the adjacent tooth-root fillets were revealed by magnetic-particle inspection. Through hardening at the acute-angle intersections of the mounting holes and tooth-root fillets was revealed by metallographic examination. Design of the gear and placement of the mounting holes, which resulted in through hardening, were concluded to be the contributing factors to the fatigue failure of the gear.
Book Chapter
Corrosion Fatigue Failure of 302 Stainless Steel Spring
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0051292
EISBN: 978-1-62708-225-9
... marks and fatigue striations (beach marks), which are not always expected in the fracture surface of spring fatigue failures, as noted above. Clear evidence of pitting corrosion at the fatigue fracture origin can also be seen. However, the portions of spring showed no evidence of red rust and had...
Abstract
Type 302 stainless steel springs used in a printing operation failed by breaking into several pieces after two months in service. The springs were operating over a very small deflection and were regulating the flow of ink, in which they were constantly immersed. Fatigue fractures on every piece of the spring were revealed by visual examination. Each of the fractures was found to be oriented at 45 deg to the wire axis. Clear evidence of pitting corrosion at the fatigue fracture origin was also observed. Free chloride ions were revealed to be present in the ink in which the spring was operating. An alternative ink that contained no free chloride ions was recommended.
Book Chapter
Fatigue Failure of a Carburized Steel Bevel Pinion Because of Misalignment
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048273
EISBN: 978-1-62708-225-9
... at the roots and to break off. Selected Reference Selected Reference • Fatigue Failures , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 700 – 727 10.31399/asm.hb.v11.a0003544 ...
Abstract
Several teeth of a bevel pinion which was part of a drive unit in an edging mill failed after three months in service. Specifications required that the pinion be made from a 2317 steel forging and that the teeth be carburized and hardened to a case hardness of 56 HRC and a core hardness of 250 HRB. Two teeth were revealed by visual examination to have broken at the root and fatigue marks extending across almost the entire tooth were exhibited by the surface of the fracture. Cracking in all the tooth was showed by magnetic-particle inspection. The pinion was concluded to have failed by tooth-bending fatigue. Spalling was also noted on the pressure (drive) side of each tooth at the toe end which indicated some mechanical misalignment of the pinion with the mating gear that caused the cyclic shock load to be applied to the toe ends of the teeth.
1