1-20 of 1241 Search Results for

fatigue failure

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001656
EISBN: 978-1-62708-219-8
... and depassivation by chloride ions. The first portion of this paper presents information, using metallographic techniques, on the depassivation of reinforcing steel in the presence of Cl − ions. Although there are no reports of failures in primary elements of structural concrete members due to fatigue...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048728
EISBN: 978-1-62708-228-0
... wishes to acknowledge G.M. Buchheim, Exxon Research & Engineering Company, for his assistance in preparing several of the examples in the source article. Selected Reference Selected Reference • Fatigue Failures , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0047615
EISBN: 978-1-62708-230-3
... in the area of the fin tip. Cracking at the end of the fin-to-tube fillet weld was noted. The results indicate the failures were due to corrosion fatigue whose stresses were primarily thermally induced. A temporary solution included inspecting all tubes with shear-wave ultrasonics. Tubes with the most severe...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0048114
EISBN: 978-1-62708-231-0
... of resultant tensile stress from torsional stressing of the spring material. It was concluded that the fatigue failure in the spring was initiated at the base of a seam. Tensile stress Torsion 5160 UNS G51600 Fatigue fracture Hot-rolled hardened-and-tempered 5160 bars for suspension springs...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001418
EISBN: 978-1-62708-231-0
... the bearing material. The defect was stoned smooth, a new bearing fitted, and the engine returned to service. The engine performed satisfactorily for a further twelve months until fracture of the crankshaft through the No. 5 crank pin supervened. The fracture revealed a complex torsional fatigue failure...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001496
EISBN: 978-1-62708-231-0
... bending fatigue of the gear from the reverse direction near the toe end. The cause of failure was a crossed-over tooth bearing condition that placed loads at the heel end when going forward and at the toe end when going in reverse. The condition was too consistent to be a deflection under load; therefore...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047964
EISBN: 978-1-62708-223-5
... retained austenite. Fatigue life of the bearing returned to normal with these changes. Selected Reference Selected Reference • Ahmed R. , Rolling Contact Fatigue , Failure Analysis and Prevention , Vol 11 , ASM Handbook , ASM International , 2002 , p 941 – 956 10.31399/asm.hb.v11...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047779
EISBN: 978-1-62708-223-5
... specified for the shafts was a free-machining grade of A6 tool steel. Fig. 1 A6 tool steel tube-bending-machine shaft that failed by fatigue fracture. Section A-A: Original and improved designs for fillet in failure region. Dimensions are in inches. View B: Fracture surface showing regions of fatigue...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001574
EISBN: 978-1-62708-223-5
... was a clear indication of high temperature exposure (due to insufficient cooling) during application. The most probable cause of failure was thermal fatigue. Grain boundaries Precipitation Punches WR-95 Chromium nitride coating Thermal fatigue fracture Background The CrN coated restrike...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c9001413
EISBN: 978-1-62708-223-5
... after removal of the nut, is seen in Fig. 2 . Failure resulted from the culmination of two principal fatigue cracks which developed on approximately parallel planes from the roots of adjacent threads. Fig. 2 Details of fracture. In Fig. 2 the origin of one of the cracks is indicated...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047414
EISBN: 978-1-62708-233-4
...). This fatigue failure was the result of poor design, which incorporated a notch that acted as a stress raiser, leading to fatigue-crack growth. A generous radius was recommended to avoid similar failures. Radii Stress concentration Steel casting Fatigue fracture Figure 1 shows a fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047059
EISBN: 978-1-62708-217-4
... that failure of the retainer was the result of fatigue caused by vibration in the flyweight assembly. Impact of the pivot pins on the retainer also contributed to failure. Recommendations included redesign of the flyweight assembly, and replacement of the channel-shaped retainer with a spring-clip type of pin...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047072
EISBN: 978-1-62708-217-4
... to the T6 temper after forming. Aircraft components Gas turbine engines Spot welds 2024-T42 UNS A92024 6061-T6 UNS A96061 Joining-related failures Fatigue fracture Heat treating-related failures Postflight inspection of a gas-turbine aircraft engine that had experienced compressor stall...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048356
EISBN: 978-1-62708-229-7
...-wall tubes in the row, replacing the broken tube, and repairing cracks in other tubes by welding. ASME SA226 Joining-related failures Fatigue fracture In a new stationary boiler, furnace water-wall tubes were welded to the top of a dust bin for rigid support ( Fig. 1a ). The tubes measured...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0048350
EISBN: 978-1-62708-227-3
... surfaces by electron microscopy at high magnification. Fatigue failures were concluded to be caused by vibrations resulting from normal steam flow at high steam demand. Too rigid support near the steam drum resulted in concentration of vibratory strain in the regions of failure. The method of supporting...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047917
EISBN: 978-1-62708-227-3
... that the failure was caused by fatigue initiated in corrosion pits (caused by seawater). The fracture was found to be transgranular. It was recommended that the inner and outer rings should both be made from the more corrosion resistant 17-4 PH (AISI type 630) stainless steel. Cyclic load Hydrofoils Stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001417
EISBN: 978-1-62708-227-3
... of fatigue failure were present with origins at about the mid-thickness of the pin located each side of the step in the fracture surface. In addition, cracking was evident in the axial direction. The crack ran into one of the radial oil holes near the end of the pin. A further section was taken transverse...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0001784
EISBN: 978-1-62708-218-1
... Abstract Field fatigue failures occurred in a hand-operated gear shift lever mechanism made of 1049 medium carbon steel hardened to 269 to 285 HB. The failures occurred in the 3.18 mm (0.127 in.) radius. Redesign increased the shift lever's diameter to 25 mm (1 in.) and the radius to 4.75 mm...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c9001498
EISBN: 978-1-62708-218-1
....” Only the pinion head had been returned. The shaft portion had been torch-cut away. Chemical analysis along with the microstructure confirmed the specified material was SAE 43BV12 Ni-Cr-Mo alloy steel. The mode of failure was surface contact fatigue through the shear plane subsurface at the lowest point...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048154
EISBN: 978-1-62708-235-8
.... Helical springs Medium-carbon steel Joining-related failures Fatigue fracture A medium-carbon helical spring was installed in a machine assembly that was welded into its final location. During welding, which was conducted several inches from the spring, no shield was used to prevent spatter from...