Skip Nav Destination
Close Modal
Search Results for
fatigue crack propagation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 519 Search Results for
fatigue crack propagation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Fatigue Fracture of Titanium Alloy Knee Prostheses
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1993
Fig. 7 Fatigue crack propagation region of device in Fig. 6 . Crack propagated from upper left to lower right.
More
Image
Published: 15 May 2022
Fig. 3 Thermal fatigue failure and conventional fatigue crack-propagation fracture during reversed-load cycling of acetal. Source: Ref 36
More
Image
Published: 01 January 2002
Fig. 42 Fatigue crack propagation rate versus stress intensity factor range. Fatigue striations may be present on the fracture surface for loading in the linear portion of the curve (Paris Law region), and permit analytical estimations of life to fracture. Just as fracture toughness varies
More
Image
in Effect of Prior Processing on the Performance of PH 13-8 Mo Stainless Steel Helicopter Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 8 Representative striations observed within the fatigue crack propagation regions of each component. Magnification 5000×
More
Image
in Crack Propagation of Sirocco Fan
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Image
Published: 01 January 2002
Fig. 44 SEM views of intergranular facets within fatigue crack propagation area of cold-worked electrolytic tough pitch copper tested in rotating bending at moderately low stress
More
Image
Published: 15 January 2021
Fig. 43 Fatigue crack propagation rate ( da / dN ) versus stress-intensity factor range (Δ K ). Fatigue striations may be present on the fracture surface for loading in the linear portion of the curve (Paris law region) and permit analytical estimations of life to fracture. Just as fracture
More
Image
Published: 15 May 2022
Fig. 6 Specimens employed in fatigue crack propagation studies; (a) single-edge notch specimen, (b) compact-tension specimen
More
Image
Published: 15 May 2022
Fig. 14 Comparison of fatigue crack propagation behavior in the Paris regime for several amorphous and semicrystalline polymers including polycarbonate (PC), polymethyl methacrylate (PMMA), polypropylene oxide (PPO), polyvinyl fluoropolymers (PVF), polysulfone (PSF), polystyrene (PS
More
Image
in Analysis of Degradation and Failure Mechanisms that Develop in Hot Forging Die
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 Typical appearance of fatigue crack propagation and plastic deformation on different fillets
More
Image
in Failure of a Concentric Pipe for a Controllable Pitch Propeller System
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 9 Fatigue crack propagation through the pipe metal. The internal surface of the pipe is shown on the upper left region. Propagation followed from the lower right to the upper left region
More
Image
Published: 15 May 2022
Fig. 12 An S-shaped fatigue crack propagation. K , stress-intensity factor; K c , fracture toughness curve indicating its three characteristic regions
More
Image
Published: 15 May 2022
Fig. 13 Fatigue crack-propagation behavior of various polymers. PSU, polysulfone; PMMA, polymethyl methacrylate; PC, polycarbonate; PS, polystyrene; PVC, polyvinyl chloride. Source: Ref 97
More
Image
Published: 15 May 2022
Fig. 14 Rate of fatigue crack propagation of injection-molded glass-reinforced polyvinyl chloride composites containing 10 and 30 wt% glass as a function of the energy-release rate, J I . Arrows indicate the critical energy-release rate, J Ic , for each.
More
Image
Published: 15 May 2022
Fig. 15 Fatigue crack-propagation rates ( da / dN ) at 10 Hz as a function of stress-intensity factor range (Δ K ) in low-density polyethylene. da / dN decreases with increasing Δ K . Source: Ref 100
More
Image
in Analysis of Degradation and Failure Mechanisms that Develop in Hot Forging Die
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 2 Global appearance of lateral surface: ( a ) fatigue crack propagating along different surfaces of the die and ( b ) SEM micrograph showing typical crack morphology on the side surface of the die
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed. accelerated testing Arrhenius model chemical degradation environmental stress cracking fatigue crack propagation Miner's rule Paris law polymeric materials...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue. corrosion fatigue crack growth crack initiation damage tolerance criterion fatigue fracture fatigue strength fatigue-crack propagation finite...
Abstract
This article describes three design-life methods or philosophies of fatigue, namely, infinite-life, finite-life, and damage tolerant. It outlines the three stages in the process of fatigue fracture: the initial fatigue damage leading to crack initiation, progressive cyclic growth of crack, and the sudden fracture of the remaining cross section. The article discusses the effects of loading and stress distribution on fatigue cracks, and reviews the fatigue behavior of materials when subjected to different loading conditions such as bending and loading. The article examines the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001511
EISBN: 978-1-62708-227-3
... heat treating following forging, it was surmised that the defect led to the propagation of an internal brittle crack, or clink. A fatigue crack propagated from this origin to the outer surface of the shaft after about a year of service. Finally a last ligament of a few square inches held the shaft...
Abstract
An LNG tanker experienced a fracture of the solid tail shaft, which is a section of the main drive shaft. The tail shaft was made of a forged low-carbon steel. In spite of two ultrasonic inspections, a large defect the size of a football in the center of the shaft was missed. During heat treating following forging, it was surmised that the defect led to the propagation of an internal brittle crack, or clink. A fatigue crack propagated from this origin to the outer surface of the shaft after about a year of service. Finally a last ligament of a few square inches held the shaft together and broke, leading to the separation of the shaft. The cause of failure was fatigue crack initiation and crack growth under reverse bending cyclic stresses. There was no indication that misalignment existed because there was no indication of fretting at the bolt holes in the flange at the end of the shaft. In the case of this shaft, a solution would have been to machine the core of the shaft to remove the brittle material or to use a tubular shaft.
1