Skip Nav Destination
Close Modal
Search Results for
fatigue crack initiation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 639 Search Results for
fatigue crack initiation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Metallurgical Investigation of a Turbine Blade and a Vane Failure from Two Marine Engines
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 4 Fatigue crack initiation and propagation in the turbine blade sample. Arrow ‘O’ indicates initiation region and small arrows depict crack growth direction. (a) Initiation region; (b) Fatigue striations 0.1-mm from crack initiation region; (c) Crack growth bands 1-mm from crack
More
Image
in Failure Analyses of Six Cylinder Aircraft Engine Crankshafts
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in Failure Analyses of Six Cylinder Aircraft Engine Crankshafts
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in Failure Analyses of Six Cylinder Aircraft Engine Crankshafts
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 10 SEM micrograph shows LF14 tension-to-tension fatigue crack initiation (FCI) site at planar grain boundary facet (Center). 150×
More
Image
in Failure Analyses of Six Cylinder Aircraft Engine Crankshafts
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 11 SEM micrograph shows film on facet at fatigue crack initiation site of LF14 tension-to-tension test. 2,000×
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001793
EISBN: 978-1-62708-241-9
..., and chemical analyses revealed that the concentric pipe failed due to fatigue. Fatigue cracks initiated along longitudinal welds where wire spacers attach to the external surface of the pipe. The effect of crack-like defects, stress concentration at the weld toe, residual tensile stress, and lack...
Abstract
A controllable pitch propeller (CPP) on a dynamic positioning ship failed after eight months of operation. The CPP design consists of a hollow propeller shaft and a concentrically located pipe that operates inside. The pitch of the propeller blades is controlled hydraulically through the longitudinal displacement of the inner (concentric) pipe. Fractography, microstructural, microhardness, and chemical analyses revealed that the concentric pipe failed due to fatigue. Fatigue cracks initiated along longitudinal welds where wire spacers attach to the external surface of the pipe. The effect of crack-like defects, stress concentration at the weld toe, residual tensile stress, and lack of penetration contributed to a shorter fatigue crack initiation phase and premature failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c9001606
EISBN: 978-1-62708-226-6
... four of the implants. In every instance, the fatigue cracks initiated from the attachment screw holes at the reduced cross sections of the implants. Two fixation implant designs were analyzed using finite-element modeling. This analysis confirmed the presence of severe stress concentrations adjacent...
Abstract
Failures of four different 300-series austenitic stainless steel biomedical fixation implants were examined. The device fractures were observed optically, and their surfaces were examined by scanning electron microscopy. Fractography identified fatigue to be the failure mode for all four of the implants. In every instance, the fatigue cracks initiated from the attachment screw holes at the reduced cross sections of the implants. Two fixation implant designs were analyzed using finite-element modeling. This analysis confirmed the presence of severe stress concentrations adjacent to the attachment screw holes, the fatigue crack initiation sites. Conclusions were reached regarding the design of these types of implant fixation devices, particularly the location of the attachment screw holes. The use of austenitic stainless steel for these biomedical implant devices is also addressed. Recommendations to improve the fixation implant design are suggested, and the potential benefits of the substitution of titanium or a titanium alloy for the stainless steel are discussed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001531
EISBN: 978-1-62708-231-0
..., and ductility are mainly determined by the carbon content of wheel steels. The fatigue crack growth resistance is insensitive to composition and microstructure, while the fatigue crack initiation life increases with the decrease of austenite grain size and pearlite colony size. The dynamic fracture toughness...
Abstract
In this study, the failure modes of cartwheel and mechanical properties of materials have been analyzed. The results show that rim cracking is always initiated from stringer-type alumina cluster and driven by a combination effect of mechanical and thermal load. The strength, toughness, and ductility are mainly determined by the carbon content of wheel steels. The fatigue crack growth resistance is insensitive to composition and microstructure, while the fatigue crack initiation life increases with the decrease of austenite grain size and pearlite colony size. The dynamic fracture toughness, KID, is obviously lower than static fracture toughness, KIC, and has the same trend as KIC. The ratio of KID/sigma YD is the most reasonable parameter to evaluate the fracture resistance of wheel steels with different composition and yield strength. Decreasing carbon content is beneficial to the performance of cartwheel.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001346
EISBN: 978-1-62708-215-0
... of the steam superheating coils of two hydrocracker charge heaters in a refinery failed prematurely in service. Failure analysis of the tubes indicated that the failures could be attributed to thermal fatigue as a result of temperature fluctuations as well as restriction to movement. Fatigue cracks initiated...
Abstract
Alloy UNS N08800 (Alloy 800) tubes of the steam superheating coils of two hydrocracker charge heaters in a refinery failed prematurely in service. Failure analysis of the tubes indicated that the failures could be attributed to thermal fatigue as a result of temperature fluctuations as well as restriction to movement. Fatigue cracks initiated intergranularly from both the flue gas and steam sides. Enhanced general and grain boundary oxidation coupled with age hardening of the alloy led to the formation of incipient intergranular cracks that acted as sites for the initiation of the fatigue cracks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001621
EISBN: 978-1-62708-227-3
... observed were sharp, transgranular, and not associated with any decarburization or other microstructural anomalies in the steel. Cracking of this main engine crankshaft flange was very likely a consequence of fatigue cracking initiated at fretting damage. The cause of the fretting was from loosening...
Abstract
A crankshaft flange from a marine diesel engine illustrated a less-common case of fretting-fatigue cracking. The crankshaft was from a main engine of a sea-going passenger/vehicle ferry. The afterface of the flange was bolted to the flange of a shaft driving the gearbox. Cracks observed were sharp, transgranular, and not associated with any decarburization or other microstructural anomalies in the steel. Cracking of this main engine crankshaft flange was very likely a consequence of fatigue cracking initiated at fretting damage. The cause of the fretting was from loosening of the bolts.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001027
EISBN: 978-1-62708-214-3
... in the failed yoke after separation of crack faces. Fatigue crack initiated in bore of pillow-block bushing labeled O. 0.93×. Fig. 4 Severe corrosion in the bore of the pillow-block bushing hole of the main rotor yoke. Fatigue crack (origin labeled O) initiated from a corrosion pit. 4.25×. Fig...
Abstract
The 4340 steel main rotor yoke of a helicopter failed during a hovering exercise. Visual examination of the yoke revealed no evidence of gross external damage. Visual fracture surface examination, macrofractography, scanning electron micrography, and metallography of a section cut from the yoke in the region of the cracking indicated that the failure was caused by fatigue-crack initiation and growth from severe corrosion damage to a pillow-block bolt hole. Corrosion occurred because of failure of the protection scheme. An upgraded corrosion protection scheme for the bolt holes was recommended, along with nondestructive inspection of the region at intervals determined by fractographic analysis of the fatigue crack growth.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001442
EISBN: 978-1-62708-221-1
... the unwelded roots of the fillet welds, by which the vanes were attached to the supporting plates. The impeller would have shown increased resistance to fatigue crack initiation if the T joint between the vanes and plates had been of the full penetration type. Fillet welds Impellers Weld defects Mild...
Abstract
The impeller of a 4 ft. diam extraction fan driven by a 120 hp motor at 1,480 rpm. disrupted suddenly. The majority of the vanes had become detached where they were welded to the plates. At other locations, separation of the vanes was accompanied by tearing of the adjacent plate, failure being initiated at the weld fillets of the inner end of the vanes. An unusual feature was that the blades disclosed regions having a pronounced striated and stepped appearance. The etched microstructure was typical of a low carbon rolled plate having the usual banded appearance. A cross section through the fillet welds and zone showed lamellar tearing, which confirmed that failure had occurred in weld metal adjacent to the fusion face of the fillet to the vane. Results of the investigation indicated that the primary cause of failure of the impeller was the development of fatigue cracks from the unwelded roots of the fillet welds, by which the vanes were attached to the supporting plates. The impeller would have shown increased resistance to fatigue crack initiation if the T joint between the vanes and plates had been of the full penetration type.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047558
EISBN: 978-1-62708-236-5
... that had been subjected to appreciable rubbing. The fracture appeared to be typical of rotary bending fatigue under conditions of a low nominal stress with a severe stress concentration. It appeared that the fatigue cracks initiated in the surface-weld layer. The weld deposit in the original keyway...
Abstract
The shaft of an exciter that was used with a diesel-driven electric generator broke at a fillet after ten hours of service following resurfacing of the shaft by welding. The fracture surface contained a dull off-center region of final ductile fracture surrounded by regions of fatigue that had been subjected to appreciable rubbing. The fracture appeared to be typical of rotary bending fatigue under conditions of a low nominal stress with a severe stress concentration. It appeared that the fatigue cracks initiated in the surface-weld layer. The weld deposit in the original keyway displays a lack of fusion at the bottom corner. Fatigue fracture of the shaft resulted from stresses that were created by vibration acting on a crack or cracks formed in the weld deposit because of the lack of preheating and postheating. Rebuilding of exciter shafts should be discontinued, and the support plate of the exciter should be braced to reduce the amount of transmitted vibration. Also, the fillet in the exciter shaft should be carefully machined to provide an adequate radius.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001461
EISBN: 978-1-62708-224-2
... in service by overload or shock load conditions. The stress concentration effect of the sharp corner served to increase the stresses developed in this region to a magnitude which sufficed to initiate a crack. It is evident that when the fatigue crack had reached a certain depth, the notch so formed served...
Abstract
A hook, which was marked for a safe working load of 2 tons, failed while lifting a load of approximately 35 cwts. Fracture took place at the junction of the shank with the hook portion, at which no fillet radius existed. Except for an annular region round the periphery, which was of a smooth texture, the fracture was brightly crystalline indicative of a brittle failure. Microscopic examination showed the material was a low-carbon steel in the normalized condition; no abnormal features were observed. The basic cause of failure was the presence of a fatigue crack at the change of section where the shank joined the hook portion. To minimize the possibility of fatigue cracking, it was recommended that a generous radius be provided at the change of section.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001511
EISBN: 978-1-62708-227-3
... together and broke, leading to the separation of the shaft. The cause of failure was fatigue crack initiation and crack growth under reverse bending cyclic stresses. There was no indication that misalignment existed because there was no indication of fretting at the bolt holes in the flange at the end...
Abstract
An LNG tanker experienced a fracture of the solid tail shaft, which is a section of the main drive shaft. The tail shaft was made of a forged low-carbon steel. In spite of two ultrasonic inspections, a large defect the size of a football in the center of the shaft was missed. During heat treating following forging, it was surmised that the defect led to the propagation of an internal brittle crack, or clink. A fatigue crack propagated from this origin to the outer surface of the shaft after about a year of service. Finally a last ligament of a few square inches held the shaft together and broke, leading to the separation of the shaft. The cause of failure was fatigue crack initiation and crack growth under reverse bending cyclic stresses. There was no indication that misalignment existed because there was no indication of fretting at the bolt holes in the flange at the end of the shaft. In the case of this shaft, a solution would have been to machine the core of the shaft to remove the brittle material or to use a tubular shaft.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001847
EISBN: 978-1-62708-241-9
... on the outer surface of the sleeve, exposing the soft matrix underneath. This led to further wear and an increase in friction between the sleeve and bearing bush. Fatigue crack initiation occurred at the root fillet because of stress concentration and large frictional forces. Insufficient nitriding depth...
Abstract
An investigation was conducted to determine what caused a bearing sleeve in a locomotive turbocharger to fail. The sleeve, which is made of nitrided 38CrMoAl steel, fractured at the transition fillet between the cylinder and plate. Visual examination revealed significant wear on the external surface of the cylinder, with multiple origin fatigue fracture appearing to be the dominant fracture mechanism. Metallurgical examination indicated that the nitrided layer was not as deep as it was supposed to be and had worn away on the outer surface of the sleeve, exposing the soft matrix underneath. This led to further wear and an increase in friction between the sleeve and bearing bush. Fatigue crack initiation occurred at the root fillet because of stress concentration and large frictional forces. Insufficient nitriding depth facilitated the propagation of fatigue cracks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0089258
EISBN: 978-1-62708-218-1
.... The manufacturing method used to create the bulb shape was hydroforming, using a 300 series stainless steel tube in the full-hard condition. The leak was attributed to a crack in the sleeve in the radius between the bulb area and the cylindrical portion of the sleeve. Fatigue cracks initiated at multiple sites near...
Abstract
The cold start advance solenoid sleeve was found leaking through the wall during troubleshooting complain of a diesel engine that failed to start in cold weather. The component was revealed to be a tubular product with a “bulb” section at one end and threads on the other. The manufacturing method used to create the bulb shape was hydroforming, using a 300 series stainless steel tube in the full-hard condition. The leak was attributed to a crack in the sleeve in the radius between the bulb area and the cylindrical portion of the sleeve. Fatigue cracks initiated at multiple sites near the OD of the sleeve were revealed by scanning electron microscopy of the broken-open crack. It was revealed by analysis that during the hydroforming process, heavy biaxial strains were imparted to the sleeve wall. It was interpreted that when combined with the heavy strains inherently present in the full-hard 300 series stainless steel, the hydroforming strains in the radius caused the microcracking. The root cause for this failure was identified to be omission of an intermediate stress relief or annealing treatment prior to hydroforming to the final shape.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047151
EISBN: 978-1-62708-227-3
... the conclusion that the connecting rods were rendered susceptible to fatigue-crack initiation and propagation by the notch effect of coarse folds formed during the forging operation. One fracture was caused by fatigue resulting from operating stresses, and the other was a secondary tensile fracture...
Abstract
A motorboat engine connecting rod forged from carbon steel fractured in two places and cracked at the small end during service. The analysis (visual inspection, 50x micrographs of sections etched with 2% nital, magnetic-particle inspection, and metallographic examination) supported the conclusion that the connecting rods were rendered susceptible to fatigue-crack initiation and propagation by the notch effect of coarse folds formed during the forging operation. One fracture was caused by fatigue resulting from operating stresses, and the other was a secondary tensile fracture. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001005
EISBN: 978-1-62708-215-0
...-speed turning maneuvers that required power-assisted steering. Metallographic examination of the cracked AISI 4135 arms, heat treated to a hardness of 285 to 341 HB, revealed that fatigue crack initiation occurred from the tip of oxide scale inclusions forged into the U-shaped arm at the inside radius...
Abstract
Several heavy truck Cr-Mo steel steering arms in service less than three years fractured during stationary or low-speed turning maneuvers that required power-assisted steering. Metallographic examination of the cracked AISI 4135 arms, heat treated to a hardness of 285 to 341 HB, revealed that fatigue crack initiation occurred from the tip of oxide scale inclusions forged into the U-shaped arm at the inside radius. Corrective action involved redesigning the steering arm to increase the minimum forging radius and reduce the stress level at the inner-bend radius, and reducing the level of power assistance to the wheels to encourage the driver to put the vehicle in motion prior to turning.
1